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1. SLEx and SLE(K, )

Loewner equation with a driving function W,
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2. One-Sided Restriction

A = the familv of closed subsets A of H s.t.
1.  H\ A is simply connected.
2. Ais bounded, and bounded away from E_ = {r < 0:2 € R}.

To each such A the conformal mapping ©, from H\ A onto H is associated
such that
$4(0)=0 and Py(z)~2z when 2z — oc.

We say that a closed set K C H is left-filled if
e K and H\ K are both simply connected and unbounded.

e ANR=R_.
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[t is said that a random left-filled set satisfies one-sided restriction if for all
A € A, the law of K conditioned { K N A = 0} is identical to that of ®;'(K):

the law of K|[{K N A = ()} = the law of ®,'(K). (2.1)
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It is said that a random left-filled set satisfies one-sided restriction if for all
A € A, the law of K conditioned {K N A = 0} is identical to that of ®,'(K);

the law of I{‘{H N A =0} = the law of &' (K). (2.1)

: 1

The one-sided restriction implies that
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The reasoning of the above may be the following.

1.  For a fixed left-filled set K satisfying one-sided restriction,
consider the probability P(K M A = 0) as a function of the conformal
mapping ®4. 4 € A and denote it as f(P4);

P(KNA=0)=P(K C®;'(H)) = f(®a).
Then for two different sets A, A" € A. A # A’, consider the probability
f(@4(®4)) = P(K C ®3'(93/(H))) = P(®4(K) C 03 (H)).
By definition of conditional probability

P(q':__tm') & (JH[}) - P(flu(h’] C &3} (H)

KNA= w) x P(KNA=0)
= P(®a(K) C 93 (H)|K N A=0) x f(®a).
On the other hand. by the one-sided restriction property of A

P(@A(I{JCd};,’{]}][}‘f{ﬂflzfﬂ) = P(fb_mbjl]{h} ) C D) (EHI)
= P(K cC ®;/(H)) = f(da).

So we have

f(@a(Pa)) = f(PA)f(Pa) = [f(PaoPy) = f(Pa)f(Pa) (2.3)



Loewner’s theory shows that it is possible to approximate any conformal
mapping ® 4 by the iteration of many conformal maps ¢;o@s0---0¢, such
that each ¢; is a conformal map in a one-parameter family of mapping {¢'}
satisfying

P =¢plop® <= I (2)=¢(¢(2)) VYs,t>0, (24)
and
©'(0) = 0. (2.5)

(The one-parameter family may be given explicitly using the Loewner chain
for a well-defined curve 7: g; = P 0.4-)
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3.

Differentiate (2.4) with respect to z.

I

(@) (2) = (¥") (¢°(2)) % (¢*) (2),

and set z = (0, then we have
(©"7)(0) = (¥")(0) x (¥")(0),
where (2.5) was used. This relation implies
Je>0 st (©)(0) =e. (2.6)

Since we assume the one-sided restriction property, we can apply the rela-
tion (2.3) to ' to have

@) = f(¢' o ¢®) = f(¢") f(¥").
[t implies that

>0 st floh) =e. (2.7)
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Combining (2.6) and (2.7), we see
%) =)= (fap’)’(ﬂ))ﬂ. o= ?
Now following Loewner’s theory. we approximate ® 4 as
DPy~@i0@py0:--00,.
Then

f(@4) ~ floropao---0¢,) = f(d1)f(d2) - f(on)
= (01(0)* x (¢5(0))* x -+ x (¢/,(0))* = ((@1 o (g ©

~ (240)"

o rl,-{}”]"([]))ﬂ
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e In § 1 we have seen that the SLE(k, p) curve with p > k/2 — 2 never hit
R_. That is

SLE(k, p) curve ~[0,t] € A, t>0, p> % — 2. (2.8)

e Here we should remember the fact that the driving function W, of the
SLE(7. p) is given using the Bessel process with index v.

Let P be the probability measure of the Bessel process of index v, R,
e Thus we can apply Eq.(2.2) for A = ~[0,¢] and we have
P{u](h- N y [[] f] - M) P E{V} [((I}ir[{”](”)) ] ‘ Es ) (20)

for any independent sample of left-filled A with the one-sided restriction
exponent a > 0.
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By definition
(f’-_.[u.r](l“) = gi(2),
where ¢¢(z) is the solution of the SLE(x. p). (1.1):
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By differentiating this equation with respect to z. we have
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And thus,

B [(240) ] = BV :‘“*"( - [ 2 ;:“ )]

- i “1 H— of J
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That is

PU(K N5(0.] = 0) = B
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3. Application of Girsanov’s transformation

Let P be the probability measure of the Bessel process of index v, R"). Con-
sider the probability measure P;"} for 1 # v, whose Radon-Nikodym derivative
with respect to P/ is given by

p—v

(EPE'”] Rip} i = Lds

— e axp { —(u* — v* —_— 3.1
rfPU-"}' » exp {}'f 4 ) ./“ 2( Rip_})z ( )

for r > 0. Under Pj”}. the process I?:E”} is a Bessel process of index p (instead of
v) started from r. This is called Girsanov’s transformation.

Compare it with

H—=¥ )\ H~V s |
. _ : 4 [s
P (K N~[0.1] =0) = EW —— ,J X i exp | — - / - ;
RE!J r Ko 0 _J{RLD})E
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ap" J?“” ds
dP®  \ r Hp ARV )2

# W= n»r g ds
(H"”) ( | m" 2RV

PY(K N+4[0,t = 0) = BV

If

we have the equality [[1] Werner (2004)]

H—is
P (K NA4[0.t] = 0) = E® [(#) ] . (3.3)
f

i ’ _
where R is the Bessel process of index u started from r.

21



""PEM - Rim o exp§ —(p® —v°) /Fr =
dpt) —\ v e Jo 2(RO)2 )
r " R o 4o f’ s
X | — exp | —— .
Ry r k Jo 2(RV)?

PY(K N~[0,t] =0) = E¥

If

we have the equality [[1] Werner (2004)]
H—is
ff N5[0,t] =0) = [( ) ] . (3.3)

i ’ _
where R is the Bessel process of index u started from r.

22



Interpretations

A.

For fixed ¢+ > 0 and fixed £ > 0, we can let a = /kr — 0. Then (3.3)
gives

PY(K N~[0,¢] = 0) ~ ca™,

where

¢ = E[M[{\/ER:H}}V—;:] = E{J:}[(RE‘:])M—H] = {ﬁ‘.l"}w_'“”gE{'”}[(H?'})”_“}_

That implies

PY(KN4[0.t] =0)~t"? in t—oc with fixed a (3.4)
and
PY(KNA[0.f] =0)~a” in a—0 with fixed ¢. (3.5)
where
o = ji—U
” ﬁ+(”+2_1)2_(”+2—1). (3.6)
K K 2 K 2

In other words. the intersection exponent between a one-sided restriction
measure with exponent a and the SLE(x. p) is o given by (3.6).

23



24

An SLE(k. p) conditioned to avoid a one-sided restriction sample of expo-

nent o is an SLE(k. 7). where




C.

If we set p = 0 above, we can say that an SLE, conditioned to avoid a

one-sided restriction sample of exponent « is an SLE(k. 7). where

| 2 1\ &
y —”+(——;> +2 -2, (3.8)

K K 2

Conversely, an SLE(x, p) can be viewed as an SLE, conditioned not to
intersect with a one-sided sample of exponent

fl' = %(;Lz—uﬁ)
K | da p+2 1 : 2 1\° |
— —|— —=] = === by (3.2
] [H J“( P 2) (H 2) ] (by (32)
1 |
= —plp+4—K). (3.9)

4K
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4. Nonintersecting SLEs3’s
(Nonintersecting SAW’s)

SLEg/3 has (two-sided restriction property).
—> one-sided restriction property is also satisfied.
e

_ 5
The exponent is o = 3 = bgaw.

S
C .
W 3" Since p > 0, we have p = 2.

Co| ot

1
In (3.9) = J‘—p(p#—hl — K), set a =
K
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SLEg,3 curve [0, ¢] starting from ay > 0
conditioned not to intersect with SLEg/; curve 7,[0, oc) starting from a; = 0

£ SLE(8/3.2) starting from as > 0.

o0

0o
nohm"’e" sechin
SLEg Cm Litiam jd SLEs/
SLE 8/ — SLE(—&, 2)
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3] G. F. Lawler, O. Schramm, W. Werner :
Conformal restriction. The chordal case,
J. Amer. Math. Soc. 16 (2003) 917-955.

The boundary of sample of one-sided restriction measure of exponent a

4 SLE(8/3.p) curve. where

(p+2)(3p+ 10)

o= o : (4.1)
SLE(8/3.2) = one-sided restriction measure of exponent
(24+2)(3x2410)
= =

32

3

s , : S
Let a = 2 in the equation a = 1—;}(;; +4 — k) with kK = 7
K h‘ L,

Then we have p = 4.
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SLEg/3 curve 73[0,¢] starting from as > as
conditioned not to intersect with SLE(8/3.2) curve 752|0.00) starting from
as >0

d

= SLE(8/3,4) starting from az > 0.

foe) 00
GLE SLE(-—:;,Z)

SL E9/3 with non?nkrsen’iry Corditr on

gl{J
SLE(?, 4)

q,=0 A. Q3
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b 2% 4%
SUEy, SLE(3,5.) SLE(§,5,1)
o s KSLE{.Q.' ‘PP)
= QF

a; = 0 az. aP

Consider the situation shown in the above figure.
Let p be the number of SLE(8/3, p)’s. Then

Pp=2(p—1). (4.2)

The one-sided restriction exponent of SLE(8/3. p,) is

1
= g;u(Bp + 2). (4.3)



Conformal Field Theory vs. SLE

Kac Formula

6
central charge ¢=1—- —, m e C.
m(m-+1)

. T
highest weight A" = [r(m + 1) — sm] I
| dm(m + 1)

Consider the case

In this case

r.s=123,.... (4.4)

B. Duplantier and H. Saler,

Phys. Rev. Lett. 57 (1986) 3179-3182.
“*Surface Dimension” for p chanins of polymers
3(p+1)-2)2-1

/ L ..
X Rpr11 = 51 = g,u(.jp + 2).

Exact Surface and Wedge Exponents for Polvmers in Two Dimensions,
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5. Hitting Time Distribution

32

Lamperti’s relation

Let B; be the one-dimensional standard Brownian motion started from . Con-
sider the geometric Brownian motion with drift v, exp(B; + vt).t > 0. The
following relation is established.

Lemma 5.1 Let R\ be the Bessel process with index v started from. r = e”.
Then

exp(B, + vt) = R‘;’,J} (5.1)

i ¥
with

o f 9

ot
Ai”] - / exp{2(B; + vs)}ds = / {EXIJ(B,‘,- + UH)} s (5.2)
Jo

J ()




: 33

I . . .
; . (L : e e £55€1 Pprocess Wiy dnder o SLaried. fror., o= €.
Lemma 5.1 Let R\ be the Bessel process with index v started from. 1 4
Then

exp(B; + vt) = i’[_;],.-, (5.1)
with
t f 2
AV = / exp{2(B, + vs)}ds = f {EXIJ{BS + V"*’}} ds (5.2)
Jo Jo

Remark. By (5.2).

dAY) = exp{2(B, + vt)}dt = (R{:i,])hdf = dt = ———

Then if we set

b tds .
H, }:/ —— (5.3)
o (Rs’)*

we find the correspondence

u< A = HW<¢. (5.4)



34
Asian option discussion

Let Ty be an exponential variable, with parameter A, which is independent of
(B;,t > 0). Consider the distribution P(Af"] > u);

P(AY) > u)

/ dt \e MP(AY > u)
i

= N[ dte¥*P(HY <)

J0

o0 ) ot »
e ,— Al (1
= A A dt ¢ /“ dh E {1{Hfr,,]=,,}]

= / dh EY) L po_p A dt e
0 I

- hi
o0 o )
= /U dhE™ |10y €7
= E(”}[ex{}(—)\}ffi“})]. (5.5)

where 1(w) is the indicator function of the event w and (5.4) was used. By (5.3).

P(AY) > u)=E™ |exp [ -\ f "E': .
Jo (RY)2




Set

2

H=v2\+1? < e

2
E" [exp —)\/ (f;
J O (Hﬁ- )?

i . p—=v (v) R=¥ i ]
= EW ( 'E)]) RL exp —)\/ r.fé:} .
R\ r Jo (RY)2

(5.6)

Then

Therefore. by applying Girsanov’s transformation (3.1). we have the equality

’ ; r jt—u _
P(AEI',\} > H.) = EliH [(W) ] . (r:!!)

‘u
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Now we compare the result (5.7) with the equality (3.3) of Werner. Let 36

To = inf {f : K N~v[0,t] # [ﬂ} (5.8)
for the sample of left-filled A" with the one-sided restriction exponent a and the

SLE(k, p) curve v. Then (3.3) is written as

=
P{h](f'{ mﬁf[(]«_ f] - M) — P(T{. ~ -!}) - E{H} [(#) ] " (r_-.'hﬂ)
i

Then we have arrived at the following.

Theorem 5.2 Assume that the left-filled K is under the one-sided restriction
measure with exponent o and vy is the SLE(k, p) curve. Set (5.8). Then

Ta = AY), (5.10)

when

A= —. (5.11)




The distribution of A7 has been well studied by M. Yor.

[4] M. Yor. Exponential Functionals of Brownian Motion and Related Processes.
Springer, 2001.

Let
Z. a gamma variable with parameter ~,
L 1 o=
P(Z, € du) = —T[—]rh:. i) = / e 57 1ds.
{ Nk

Z.. 4. a beta variable with parameters (a, 3),

w11 —u)?! e 31 4
Bla.d) dit. ﬂi_ri,-f}—lﬁ "1 —5)" ds.

P(Z.3 € du) =

Let A > (: define 1 = v2X 4 12, then

) d 21, i+ v [ — .
AL ela o BVE BT (5.12)
. 27 2 2
The above gives
S|
{42) iz ”r” = Aia=1 b —sf2u
Pl:-"l".f'k €du) = Wﬂ' I/" ils (1 —35) se
= \ ]
e+ 1) P l |
= —— VAP lga+b+1:— |d[—) .
I'a+b+1) 2u 2u
; (@), 2" i . ) .
Fla,v:z) = ———  Kummer’s confluent hyvpergeometric series.

2 (), !

(5.13)
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