

INTERNATIONAL WORKSHOP ON Dynamical Systems and Loewner Theory

Geometry and Loewner Theory

Andrea del Monaco Dipartimento di Matematica Università degli Studi di Roma "Tor Vergata"

Tokyo, Japan - November 22nd, 2014

《曰》 《聞》 《臣》 《臣》 三臣

200

Let *D* be a domain in \mathbb{C}^n , $n \ge 1$.

definition

A subset σ of D is called a **Jordan arc in** D if there exists a continuous injective function $\Sigma : [0, 1) \longrightarrow D$ such that $\Sigma([0, 1)) = \sigma$

∃ <\0<</p>

Let *D* be a domain in \mathbb{C}^n , $n \ge 1$.

definition

A subset σ of D is called a **Jordan arc in** D if there exists a continuous injective function Σ : $[0, 1) \longrightarrow D$ such that $\Sigma([0, 1)) = \sigma$

- if σ is an arc in D and Σ is a function as given by the above definition, we will say that Σ is a parameterization of the arc σ
- if σ̄ is the closure of σ in D̄, we shall also say that Σ(0) and Σ(1) are the endpoints of σ in D

San

Let *D* be a domain in \mathbb{C}^n , $n \ge 1$.

definition

A subset σ of D is called a **Jordan arc in** D if there exists a continuous injective function Σ : $[0, 1) \longrightarrow D$ such that $\Sigma([0, 1)) = \sigma$

- if σ is an arc in D and Σ is a function as given by the above definition, we will say that Σ is a parameterization of the arc σ
- if σ̄ is the closure of σ in D̄, we shall also say that Σ(0) and Σ(1) are the endpoints of σ in D

Notation: σ will denote both the arc and its parameterization

San

definition

The set

$$\bigcap_{\varepsilon > 0} \overline{\sigma([1 - \varepsilon, 1))} =: \Omega(\sigma)$$

is called the ω **-limit** of the arc σ in D

≡ ≥ ⊃ < ℃

... boundary paths...

definition

The set

$$\bigcap_{\varepsilon > 0} \overline{\sigma([1 - \varepsilon, 1))} \rightleftharpoons \Omega(\sigma)$$

is called the ω **-limit** of the arc σ in D

definition

A Jordan arc σ in D is said to be a **Jordan boundary path in** D if $\Omega(\sigma) \subset \partial D$

... boundary paths...

definition

The set

$$\bigcap_{\varepsilon > 0} \overline{\sigma([1 - \varepsilon, 1))} \rightleftharpoons \Omega(\sigma)$$

is called the ω **-limit** of the arc σ in D

definition

A Jordan arc σ in D is said to be a **Jordan boundary path in** D if $\Omega(\sigma) \subset \partial D$

Note that if σ is a boundary path in some domain *D* of the complex plane \mathbb{C} , then $\Omega(\sigma)$ is either a subarc of ∂D or a point.

definition

A Jordan boundary path γ in D is said to be a **slit in** D if its ω -limit $\Omega(\sigma)$ is a singleton.

E nac

definition

A Jordan boundary path γ in D is said to be a **slit in** D if its ω -limit $\Omega(\sigma)$ is a singleton.

Note that $\gamma([0,1)) \subset D$ and $\gamma(1) \in \partial D$

DQC

definition

A Jordan boundary path γ in D is said to be a **slit in** D if its ω -limit $\Omega(\sigma)$ is a singleton.

Note that $\gamma([0, 1)) \subset D$ and $\gamma(1) \in \partial D$

Given a slit γ in *D*, we will say that

- the endpoint $\gamma(0)$ is its tip
- the endpoint $\gamma(1)$ is its **root**

We shall also say that the slit γ **lands** at the point $p = \gamma(1)$, which is then called its **landing point**

Let $f: \mathbb{D} \xrightarrow{\text{into}} \hat{\mathbb{C}}$ be a conformal mapping and let γ be a slit in $D:=f(\mathbb{D})$.

Theorem

The set $f^{-1}(\gamma)$ is a slit in \mathbb{D} .

Let $f: \mathbb{D} \xrightarrow{\text{into}} \hat{\mathbb{C}}$ be a conformal mapping and let γ be a slit in $D:=f(\mathbb{D})$.

Theorem

The set $f^{-1}(\gamma)$ is a slit in \mathbb{D} .

Note that this means that if $\Gamma: [0, T] \longrightarrow \overline{\mathbb{D}}$ is any parametrization of γ , then $f^{-1} \cdot \Gamma|_{[0,T]}$ has a continuous extension to the point t = T.

why slits?!

Geometry and Loewner Theory

our setting...

Let $g : \mathbb{H} \longrightarrow H$ be a conformal map with $H := \mathbb{H} \setminus \gamma$ and $g(\infty) = \infty$.

Theorem

Let $w \in \partial H$ and $\mathcal{W} := g^{-1}(\{w\})$. Then the map g establishes a bijective correspondence between the connected components of $\partial \mathbb{H} \setminus \mathcal{W}$ and those of $\partial H \setminus \{w\}$.

In particular, the set \mathcal{W} consists of $\nu \in \mathbb{N}$ pairwise distinct points if and only if $\partial H \setminus \{w\}$ has exactly ν connected components.

< 注) 三 注

our setting...

Moreover, letting ξ_0 and ω_0 be respectively the root and the tip of the slit γ , we have:

- ▶ the preimage $g^{-1}(\xi_0)$ of ξ_0 consists exactly of two points $\alpha, \beta \in \mathbb{R}, \alpha < \beta$
- ▶ the preimage $g^{-1}(\omega_0)$ of ω_0 consists of a unique point $\lambda \in (\alpha, \beta)$
- g maps $\hat{\mathbb{R}} \setminus [\alpha, \beta]$ homeomorphically onto $\hat{\mathbb{R}} \setminus \{\xi_0\}$

San

how to find such a function?!

Geometry and Loewner Theory

€ 990

イロト イ理ト イモト イモト

Theorem

Let γ be a slit in the upper half-plane \mathbb{H} landing at some point $\xi_0 \in \mathbb{R}$. Set $\bar{\gamma} := \gamma \cup \{\xi_0\}$. There exists a unique single-slit mapping $g_{\gamma} : \mathbb{H} \xrightarrow{\text{onto}} H := \mathbb{H} \setminus \gamma$ such that

$$\lim_{z \to \infty} g(z) - z = 0 \tag{1}$$

Theorem

Let γ be a slit in the upper half-plane \mathbb{H} landing at some point $\xi_0 \in \mathbb{R}$. Set $\bar{\gamma} := \gamma \cup \{\xi_0\}$. There exists a unique single-slit mapping $g_{\gamma} : \mathbb{H} \xrightarrow{\text{onto}} H := \mathbb{H} \setminus \gamma$ such that

$$\lim_{z \to \infty} g(z) - z = 0 \tag{1}$$

< 2 → 2

Moreover, if $\mathcal{C} \coloneqq g_{\gamma}^{-1}(\bar{\gamma})$ and $\bar{\gamma}^*$ is the reflection of $\bar{\gamma}$ w.r.t. \mathbb{R} , then

- ► $g_{\gamma}|_{\mathbb{H}}$ extends to a conformal map g_{γ}^* : $\hat{\mathbb{C}} \setminus C \xrightarrow{\text{onto}} \hat{\mathbb{C}} \setminus (\bar{\gamma} \cup \bar{\gamma}^*)$ ► g^* has a Laurent expansion at ∞ of the form
- ▶ g_{γ}^* has a Laurent expansion at ∞ of the form

$$g_{\gamma}^*(z) = z + \sum_{n=1}^{\infty} c_n z^{-n},$$

with $c_n \in \mathbb{R}$ for all $n \in \mathbb{N}$ and $c_1 < 0$

Geometry and Loewner Theory

€ 990

Let $\Gamma : [0,T] \longrightarrow \overline{\mathbb{H}}$ be a parametrization of the slit γ .

Let Γ : $[0,T] \longrightarrow \overline{\mathbb{H}}$ be a parametrization of the slit γ .

Then, for any $t \in [0, T)$, we have

- a slit γ_t in \mathbb{H} defined as $\gamma_t := \Gamma[0, t]$
- a domain $H_t := \mathbb{H} \setminus \gamma_t$
- ▶ a conformal map g_t : $\mathbb{H} \longrightarrow \mathbb{H} \setminus \gamma_t$, with $g_t(z) = z + \sum_{n=1}^{\infty} c_n(t) z^{-n}$,

▲ 臣 ▶ ▲ 臣 ▶ = = ∽ ९ ୯

Let Γ : $[0,T] \longrightarrow \overline{\mathbb{H}}$ be a parametrization of the slit γ .

Then, for any $t \in [0, T)$, we have

- a slit γ_t in \mathbb{H} defined as $\gamma_t := \Gamma[0, t]$
- a domain $H_t := \mathbb{H} \setminus \gamma_t$
- ▶ a conformal map g_t : $\mathbb{H} \longrightarrow \mathbb{H} \setminus \gamma_t$, with $g_t(z) = z + \sum_{n=1}^{\infty} c_n(t) z^{-n}$,

Remark: to include the case t = T we set $\gamma_T := \emptyset$ and $g_T := id_{\mathbb{H}}$

Let $\Gamma : [0,T] \longrightarrow \overline{\mathbb{H}}$ be a parametrization of the slit γ .

Then, for any $t \in [0, T)$, we have

- a slit γ_t in \mathbb{H} defined as $\gamma_t := \Gamma[0, t]$
- a domain $H_t := \mathbb{H} \setminus \gamma_t$
- ▶ a conformal map g_t : $\mathbb{H} \longrightarrow \mathbb{H} \setminus \gamma_t$, with $g_t(z) = z + \sum_{n=1}^{\infty} c_n(t) z^{-n}$,

Note that for any *t* < *s*

- the slits γ_t and γ_s share the same root ξ_0
- $\triangleright \gamma_s \subset \gamma_t$
- ► $H_t \subset H_s$

→ □ → → 三 → → 三 → りへで

Now, for $s \leq t$ in [0, T] and $z \in \mathbb{H}$, define

$$\phi_{s,t}(z) := \left(g_t^{-1} \circ g_s\right)(z)$$

 $< \Xi >$

≡ ∽ ९ (~

 $\leftarrow \equiv \rightarrow$

-

< D > < P

∃ <2 <</p>

Now, for $s \leq t$ in [0, T] and $z \in \mathbb{H}$, define

$$\phi_{s,t}(z) := \left(g_t^{-1} \circ g_s\right)(z)$$

Furthermore, set

$$\lambda(t) \coloneqq g_t^{-1}(\Gamma(t)) \in \mathbb{R} \mathcal{J}_{s,t} \coloneqq g_t^{-1}(\Gamma([s,t])) \subset \mathbb{H} \mathcal{\bar{J}}_{s,t} \coloneqq g_t^{-1}(\Gamma([s,t])) = \mathcal{J}_{s,t} \cup \{\lambda(t)\} \mathcal{C}_{s,t} \coloneqq g_s^{-1}(\Gamma([s,t])) \subset \mathbb{R}$$

 $< \Xi >$

≡ ∽ ९ (~

토 > < 토 >

-

< □ ト < @

∃ <2 <</p>

how to use this fact > the evolution family

definition

the family $\{\phi_{s,t}\}_{s,t}$ is called the **evolution family** associated with γ

きょくきょうき うくぐ

how to use this fact > the evolution family

definition

the family $\{\phi_{s,t}\}_{s,t}$ is called the **evolution family** associated with γ

Note that for any $0 \le s \le u \le t \le T$ we have

• $\phi_{s,t}$ is a conformal map from \mathbb{H} onto $\mathbb{H} \setminus \mathcal{J}_{s,t}$

$$im_{z \to \infty} \phi_{s,t}(z) - z = 0$$

• $\phi_{s,t}|_{\mathbb{H}}$ extends to a conformal map $\phi_{s,t}^*$: $\hat{\mathbb{C}} \setminus C_{s,t} \xrightarrow{\text{onto}} \hat{\mathbb{C}} \setminus (\bar{\mathcal{J}}_{s,t} \cup \bar{\mathcal{J}}_{s,t}^*)$ with $\bar{\mathcal{J}}_{s,t}^*$ being the reflection of $\bar{\mathcal{J}}_{s,t}$ w.r.t. \mathbb{R}

•
$$\phi_{s,t}^*(z) = z + \sum_{n=1}^{+\infty} c_n(s,t) z^{-n}$$
 with $c_1(s,t) = c_1(s) - c_1(t) < 0$

ミト ≮ ミト ミー 釣へ (~

how to use this fact > the evolution family

definition

the family $\{\phi_{s,t}\}_{s,t}$ is called the **evolution family** associated with γ

and we also have that

$$\phi_{s,t} = \phi_{u,t} \circ \phi_{s,u}$$

$$\phi_{s,t}(\zeta) = \zeta + \frac{1}{\pi} \int_{C_{s,t}} \frac{\operatorname{Im}\{\phi_{s,t}(\xi)\}}{\xi - \zeta} d\xi \quad \text{for all} \quad \zeta \in \mathbb{H}$$

$$t - s = \frac{1}{\pi} \int_{C_{s,t}} \operatorname{Im}\{\phi_{s,t}(\xi)\} d\xi$$

| ◆ 臣 ▶ ◆ 臣 ▶ ○ 免 ()

Furthermore,

- ► for any fixed $t \in (0, T]$, the arc $\overline{J}_{u,t}$ shrinks to the point $\lambda(t)$ and the segment $C_{u,t}$ tends to the same point as $u \uparrow t$
- ► for any fixed $s \in [0, T)$, the segment $C_{s,u}$ shrinks to the point $\lambda(s)$ and the arc $\overline{J}_{s,u}$ tends to the same point as $u \downarrow s$
- ▶ the function $[0, T] \ni t \mapsto \lambda(t)$ is continuous
- ▶ the function $[0,T] \ni t \mapsto c_1(t)$ is continuous and strictly increasing

(日本) 王

how to use this fact > the standard parametrization

definition

a parametrization Γ : $[0, T] \longrightarrow \overline{\mathbb{H}}$ of the slit γ is said to be a **standard parametrization of** γ if $c_1(t) = t - T$ for all $t \in [0, T]$

how to use this fact > the standard parametrization

definition

a parametrization Γ : $[0, T] \longrightarrow \overline{\mathbb{H}}$ of the slit γ is said to be a **standard parametrization of** γ if $c_1(t) = t - T$ for all $t \in [0, T]$

proposition

There exists a unique standard parametrization Γ of the slit γ .

San

how to use this fact > the standard parametrization

definition

a parametrization Γ : $[0, T] \longrightarrow \overline{\mathbb{H}}$ of the slit γ is said to be a **standard parametrization of** γ if $c_1(t) = t - T$ for all $t \in [0, T]$

proposition

There exists a unique standard parametrization Γ of the slit γ .

Remark: in some applications, it seems to be convenient to rescale the standard parametrization in such a way that $c_1(t) = 2(t - T)$.

San

how to describe the evolution now?

Geometry and Loewner Theory

describing the evolution > the (classical) kufarev-loewner theorem

Theorem

There exists a unique continuous function $\lambda : [0,T] \to \mathbb{R}$ such that, for every $s \in [0,T)$ and every $z \in \mathbb{H}$, the function

$$[s,T] \ni t \longmapsto w_{z,s}(t) := \phi_{s,t}(z)$$

is the unique solution to the Cauchy problem

$$\begin{cases} \dot{\mathbf{F}}(t) = \frac{1}{\lambda(t) - \mathbf{F}(t)}, & t \in [s, T] \\ \mathbf{F}(s) = z \end{cases}$$

The equation above is called the chordal Loewner ODE.

Geometry and Loewner Theory

< □ ト < @

€ 990

ヨトイヨトー

Recall that we have

•
$$\phi_{s,t}(\zeta) - \zeta = \frac{1}{\pi} \int_{C_{s,t}} \frac{\mathbb{Im}\{\phi_{s,t}(\xi)\}}{\xi - \zeta} d\xi \text{ for all } \zeta \in \mathbb{H}$$

and

•
$$t-s = \frac{1}{\pi} \int_{\mathcal{C}_{s,t}} \operatorname{Im} \left\{ \phi_{s,t}(\xi) \right\} d\xi$$

Recall that we have

•
$$\phi_{s,t}(\zeta) - \zeta = \frac{1}{\pi} \int_{C_{s,t}} \frac{\operatorname{Im}\{\phi_{s,t}(\xi)\}}{\xi - \zeta} d\xi \text{ for all } \zeta \in \mathbb{H}$$

and

•
$$t-s = \frac{1}{\pi} \int_{C_{s,t}} \operatorname{Im} \left\{ \phi_{s,t}(\xi) \right\} d\xi$$

Assume s < t and take any $u \in [s, t)$. Taking $\zeta := \phi_{s,u}(z)$, we get:

$$\frac{\phi_{s,t}(z) - \phi_{s,u}(z)}{t - u} = \frac{\phi_{u,t}(\zeta) - \zeta}{t - u} = \frac{\int_{C_{u,t}} \frac{\operatorname{Im}\{\phi_{u,t}(\xi)\}}{\xi - \phi_{s,u}(z)} d\xi}{\int_{C_{u,t}} \operatorname{Im}\{\phi_{u,t}(\xi)\} d\xi}$$

▲ 差 ▶ 差 ∽ へ (>

Applying the Integral Mean Value Theorem, separately for the real and imaginary parts of $\frac{1}{\xi - \phi_{s,u}(z)}$, we may write

$$\frac{\phi_{s,t}(z) - \phi_{s,u}(z)}{t - u} = \frac{1}{\xi_{u,t} - \phi_{s,u}(z)}$$

for some $\xi_{u,t} \in C_{u,t}$.

Applying the Integral Mean Value Theorem, separately for the real and imaginary parts of $\frac{1}{\xi - \phi_{z,z}(z)}$, we may write

$$\frac{\phi_{s,t}(z) - \phi_{s,u}(z)}{t - u} = \frac{1}{\xi_{u,t} - \phi_{s,u}(z)}$$

for some $\xi_{u,t} \in C_{u,t}$.

Since both $C_{u,t}$ and $\mathcal{J}_{u,t}$ tend to $\lambda(t)$ as $u \uparrow t$, we see

►
$$\phi_{s,u}(z) \rightarrow \phi_{s,t}(z)$$

► $\xi_{u,t} \rightarrow \lambda(t)$

Applying the Integral Mean Value Theorem, separately for the real and imaginary parts of $\frac{1}{\xi - \phi_{s,u}(z)}$, we may write

$$\frac{\phi_{s,t}(z) - \phi_{s,u}(z)}{t - u} = \frac{1}{\xi_{u,t} - \phi_{s,u}(z)}$$

for some $\xi_{u,t} \in C_{u,t}$.

Since both $C_{u,t}$ and $\mathcal{J}_{u,t}$ tend to $\lambda(t)$ as $u \uparrow t$, we see

$$\phi_{s,u}(z) \to \phi_{s,t}(z)$$
$$\xi_{u,t} \to \lambda(t)$$

So we finally get that

$$\frac{\phi_{s,t}(z) - \phi_{s,u}(z)}{t - u} \longrightarrow \frac{1}{\lambda(t) - \phi_{s,t}(z)}$$

and $\phi_{s,t}(z)$ is differentiable from the left.

Analogously, assuming t < T and taking $u \in [t, T)$, we see that

$$\frac{\phi_{s,u}(z) - \phi_{s,t}(z)}{u - t} \longrightarrow \frac{1}{\lambda(t) - \phi_{s,t}(z)}$$

as $u \downarrow t$.

Thus $\phi_{s,t}(z)$ is also differentiable from the right.

▲ ≧ ▶ ▲ ≧ ▶ → ≧ → 의 < (~

Analogously, assuming t < T and taking $u \in [t, T)$, we see that

$$\frac{\phi_{s,u}(z) - \phi_{s,t}(z)}{u - t} \longrightarrow \frac{1}{\lambda(t) - \phi_{s,t}(z)}$$

as $u \downarrow t$.

Thus $\phi_{s,t}(z)$ is also differentiable from the right.

Since the function λ is continuous from [0, T] to \mathbb{R} , we have done!

As for the uniqueness, notice that the right hand side is of the form G(F(t), t) where the vector field

$$G(w) = \frac{1}{\lambda(t) - w}$$

is Lipschitz continuous in its first variable locally uniformly in \mathbb{H} and the Lipschitz constant does not depend on *t*.

So, the uniqueness of the solution follows now from the Cauchy Theorem for ODE.

프 > < 프 > - 프

San

Geometry and Loewner Theory

ミト ∢ ミト ミークへ⊙

 $\langle \Box \rangle \langle \Box \rangle$

- 4

Recall that $\phi_{s,T} = g_s$ for all $s \in [0, T]$.

Then, since $g_t(z)$ is differentiable jointly in z and t, we see that it follows from the chordal Loewner ODE that

$$\frac{\partial g_t(z)}{\partial t} = -\frac{g_t'(z)}{\lambda(t) - z}$$

The last equation is know as the **chordal Loewner PDE**.

Consider now the family of the inverse conformal mappings $(h_t)_{t \in [0,T]}$ with

$$h_t \coloneqq g_t^{-1} \colon \mathbb{H} \setminus \gamma_t \longrightarrow \mathbb{H}$$

Then $g_t \circ h_t = \text{id}$.

Consider now the family of the inverse conformal mappings $(h_t)_{t \in [0,T]}$ with

$$h_t \coloneqq g_t^{-1} \colon \mathbb{H} \setminus \gamma_t \longrightarrow \mathbb{H}$$

Then $g_t \circ h_t = \text{id}$.

Differentiating both sides by *t* we get that $t \mapsto h_t(z)$ solves the chordal Loewner ODE, i.e.

$$\frac{\partial h_t(z)}{\partial t} = \frac{1}{\lambda(t) - h_t(z)}$$

for all $t \in [0, T]$ and $z \in H_t$, with initial conditions given by

$$h_t|_{t=T} = \mathrm{id}$$

Set now $\sigma = T - t$. Then we see that the previous equation becomes

$$\frac{\partial h_{\sigma}(z)}{\partial \sigma} = \frac{1}{h_{\sigma}(z) - \lambda(\sigma)}$$

with the new initial data given by

$$h_{\sigma}|_{\sigma=0} = \mathrm{id}$$

200

Set now $\sigma = T - t$. Then we see that the previous equation becomes

$$\frac{\partial h_{\sigma}(z)}{\partial \sigma} = \frac{1}{h_{\sigma}(z) - \lambda(\sigma)}$$

with the new initial data given by

$$h_{\sigma}|_{\sigma=0} = \mathrm{id}$$

This allows us

- ▶ to consider all $\sigma \ge 0$ and thus Jordan arcs $\Gamma : [0, +\infty] \to \overline{\mathbb{H}}$
- to give a reasonable meaning to the word "chordal"
- to get SLE_k

▲ 差 ▶ 差 ∽ ९ ९ ९

Let $\mathscr{C} : \mathbb{D} \longrightarrow \mathbb{H}$ the Cayley map, i.e. let

$$\mathscr{C}(z) = i\frac{z+1}{1-z}$$

and consider $\psi_{s,t}(z) := \mathscr{C}^{-1} \circ \phi_{s,t} \circ \mathscr{C}(z)$. Then ∂f

$$\frac{\partial}{\partial t} \Big[\psi_{s,t}(z) \Big] = \frac{\partial}{\partial t} \Big[\mathscr{C}^{-1} \big(\phi_{s,t}(\mathscr{C}(z)) \big) \Big]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Let $\mathscr{C} : \mathbb{D} \longrightarrow \mathbb{H}$ the Cayley map, i.e. let

$$\mathscr{C}(z) = i\frac{z+1}{1-z}$$

and consider $\psi_{s,t}(z) := \mathscr{C}^{-1} \circ \phi_{s,t} \circ \mathscr{C}(z).$ Then $\partial \left[\varphi_{s,t} \circ \varphi_{s,t} \right] = \partial \left[\varphi_{s,t} \circ \varphi_{s,t} \right]$

$$\frac{\partial}{\partial t} \Big[\psi_{s,t}(z) \Big] = \frac{\partial}{\partial t} \Big[\mathscr{C}^{-1} \big(\phi_{s,t}(\mathscr{C}(z)) \big) \Big]$$

from which we get that

$$\frac{\partial}{\partial t} \left[\psi_{s,t} \right] = -\left(1 - \psi_{s,t} \right)^2 \frac{1}{\frac{\psi_{s,t} + 1}{1 - \psi_{s,t}} + i\lambda(t)}$$

Note that
$$\operatorname{\mathbb{R}e} \frac{1}{\frac{w+1}{1-w} + i\lambda(t)} \ge 0$$

So, calling
$$p(w, t) = \frac{1}{\frac{w+1}{1-w} + i\lambda}$$
, we can write

$$\frac{\partial}{\partial t} \left[\psi_{s,t} \right] = - \left(1 - \psi_{s,t} \right)^2 p(\psi_{s,t}, t)$$

Note that
$$\operatorname{\mathbb{R}e} \frac{1}{\frac{w+1}{1-w} + i\lambda(t)} \ge 0$$

So, calling
$$p(w, t) = \frac{1}{\frac{w+1}{1-w} + i\lambda}$$
, we can write
 $\frac{\partial}{\partial t} \left[\psi_{s,t} \right] = -\left(1 - \psi_{s,t}\right)^2 p(\psi_{s,t}, t)$

and we see that the (classical) chordal equation is a particular case of the general Loewner equation given by

$$\dot{w} = (w - \tau)(1 - \overline{\tau}w)p(w, t)$$

back to geometric function theory

Geometry and Loewner Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

€ 990

Recall that to prove that $\phi_{s,t}$ map \mathbb{H} onto the slit domains $\mathbb{H} \setminus \mathcal{J}_{s,t}$ we made use of the following fact

theorem

If f is conformal, then $f^{-1}(\gamma)$ is a slit in \mathbb{D} .

E OQQ

∃ ⊳

Recall that to prove that $\phi_{s,t}$ is map \mathbb{H} onto the slit domain $\mathbb{H} \setminus \mathcal{J}_{s,t}$ we made use of the following fact

theorem

If f is a biholomorphism, then $f^{-1}(\gamma)$ is a slit in \mathbb{D} .

that is the preimage under a univalent function in \mathbb{D} of a slit in its image is a slit in \mathbb{D} .

▲ 三 ▶ 三 ∽ ९ ୯

what about preimages of slits in higher dimensions?

Geometry and Loewner Theory

€ 990

preimages of slits in higher dimensions > a counterexample

Unfortunately,

There exist univalent functions $f : \mathbb{B}^n \longrightarrow \mathbb{C}^n$ such that, given a slit γ in the image $f(\mathbb{B}^n)$, the set $f^{-1}(\gamma)$ is not a slit in \mathbb{B}^n .

< 三→ 三三

200

preimages of slits in higher dimensions > a counterexample

Unfortunately,

There exist univalent functions $f : \mathbb{B}^n \longrightarrow \mathbb{C}^n$ such that, given a slit γ in the image $f(\mathbb{B}^n)$, the set $f^{-1}(\gamma)$ is not a slit in \mathbb{B}^n .

We will prove the existence by construction:

There exist an unbounded univalent function $f : \mathbb{B}^2 \longrightarrow \mathbb{C}^2$ and a slit γ in $f(\mathbb{B}^2)_{\mathbb{C}\mathbb{C}^2}$ landing at ∞ such that $f^{-1}(\gamma)$ is not a slit in \mathbb{B}^2 .

preimages of slits in higher dimensions > a counterexample

Unfortunately,

There exist univalent functions $f : \mathbb{B}^n \longrightarrow \mathbb{C}^n$ such that, given a slit γ in the image $f(\mathbb{B}^n)$, the set $f^{-1}(\gamma)$ is not a slit in \mathbb{B}^n .

We will prove the existence by construction:

There exist an unbounded univalent function $f : \mathbb{B}^2 \longrightarrow \mathbb{C}^2$ and a slit γ in $f(\mathbb{B}^2)_{\mathbb{C}\mathbb{C}^2}$ landing at ∞ such that $f^{-1}(\gamma)$ is not a slit in \mathbb{B}^2 .

and to do that, we will make use of the following

proposition

Let σ be a boundary path in \mathbb{D} . There exists a non-constant holomorphic function $g : \mathbb{D} \longrightarrow \mathbb{C}$ such that $g \rightarrow \infty$ along σ .

イロト 不得 トイヨト イヨト 二日

200

preimages of slits in higher dimensions > the construction

Let σ be a Jordan boundary path in \mathbb{D} and suppose it is not a slit. Let $g : \mathbb{D} \longrightarrow \mathbb{C}$ be the function given by the previous proposition. Define the map $f : \mathbb{B}^2 \longrightarrow \mathbb{C}^2$ as

$$f(z,w) := \left(z + w^2 + g^2(z) + wg(z), w + g(z)\right)$$

preimages of slits in higher dimensions > the construction

Let σ be a Jordan boundary path in \mathbb{D} and suppose it is not a slit. Let $g : \mathbb{D} \longrightarrow \mathbb{C}$ be the function given by the previous proposition. Define the map $f : \mathbb{B}^2 \longrightarrow \mathbb{C}^2$ as

$$f(z,w) \coloneqq \left(z+w^2+g^2(z)+wg(z), w+g(z)\right)$$

f is the function we are looking for!

ヨト イヨト ヨー シへの

preimages of slits in higher dimensions > the construction

Let σ be a Jordan boundary path in \mathbb{D} and suppose it is not a slit. Let $g : \mathbb{D} \longrightarrow \mathbb{C}$ be the function given by the previous proposition. Define the map $f : \mathbb{B}^2 \longrightarrow \mathbb{C}^2$ as

$$f(z,w) \coloneqq \left(z+w^2+g^2(z)+wg(z), w+g(z)\right)$$

f is the function we are looking for! Indeed:

- it is univalent
- $D := f(\mathbb{B}^2)$ is an unbounded domain of \mathbb{C}^2
- $f \longrightarrow \infty$ along σ
- $\triangleright \gamma$ is a slit in D
- $f^{-1}(\gamma)$ is not a slit in \mathbb{B}^2

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → ○ � @

preimages of slits in higher dimensions

Note that:

- ► the construction does not rely on any peculiar property of the unit ball B²
- it only depends on Jordan boundary paths in D and automorphisms of C²

< E> E ∽Q@

preimages of slits in higher dimensions

Note that:

- ► the construction does not rely on any peculiar property of the unit ball B²
- ▶ it only depends on Jordan boundary paths in D and automorphisms of C²

As a consequence:

There exist univalent functions $f : \mathbb{D}^n \longrightarrow \mathbb{C}^n$ such that, given a slit γ in the image $f(\mathbb{D}^n)$, the set $f^{-1}(\gamma)$ is not a slit in \mathbb{D}^n .

the end

Grazie a tutti per l'attenzione! (arigatōgozaimasu)

E ► < E ► ...

< □ ト < @

€ 990