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arcs...

Let 𝐷 be a domain in ℂ𝑛, 𝑛 ≥ 1.

definition

A subset 𝜎 of 𝐷 is called a Jordan arc in 𝐷 if there exists a continuous
injective function Σ∶ [0, 1) ⟶ 𝐷 such that Σ([0, 1)) = 𝜎

▶ if 𝜎 is an arc in 𝐷 and Σ is a function as given by the above definition,
we will say that Σ is a parameterization of the arc 𝜎

▶ if 𝜎 is the closure of 𝜎 in 𝐷, we shall also say that Σ(0) and Σ(1) are the
endpoints of 𝜎 in 𝐷

Notation: 𝜎 will denote both the arc and its parameterization
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arcs...

definition

The set

⋂
𝜀>0

𝜎([1 − 𝜀, 1)) =∶ Ω(𝜎)

is called the 𝜔-limit of the arc 𝜎 in 𝐷

definition

A Jordan arc 𝜎 in 𝐷 is said to be a Jordan boundary path in 𝐷 ifΩ(𝜎) ⊂ 𝜕𝐷

Note that: if 𝜎 is a boundary path in some domain 𝐷 of the complex plane
ℂ, then Ω(𝜎) is either a subarc of 𝜕𝐷 or a point.
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... boundary paths...

definition

The set

⋂
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...and slits

definition

A Jordan boundary path 𝛾 in 𝐷 is said to be a slit in 𝐷 if its 𝜔-limit Ω(𝜎) is a
singleton.

Note that 𝛾([0, 1)) ⊂ 𝐷 and 𝛾(1) ∈ 𝜕𝐷

Given a slit 𝛾 in 𝐷, we will say that
▶ the endpoint 𝛾(0) is its tip
▶ the endpoint 𝛾(1) is its root

We shall also say that the slit 𝛾 lands at the point 𝑝 = 𝛾(1), which is then
called its landing point

Geometry and Loewner Theory



...and slits

definition

A Jordan boundary path 𝛾 in 𝐷 is said to be a slit in 𝐷 if its 𝜔-limit Ω(𝜎) is a
singleton.

Note that 𝛾([0, 1)) ⊂ 𝐷 and 𝛾(1) ∈ 𝜕𝐷

Given a slit 𝛾 in 𝐷, we will say that
▶ the endpoint 𝛾(0) is its tip
▶ the endpoint 𝛾(1) is its root

We shall also say that the slit 𝛾 lands at the point 𝑝 = 𝛾(1), which is then
called its landing point

Geometry and Loewner Theory



...and slits

definition

A Jordan boundary path 𝛾 in 𝐷 is said to be a slit in 𝐷 if its 𝜔-limit Ω(𝜎) is a
singleton.

Note that 𝛾([0, 1)) ⊂ 𝐷 and 𝛾(1) ∈ 𝜕𝐷

Given a slit 𝛾 in 𝐷, we will say that
▶ the endpoint 𝛾(0) is its tip
▶ the endpoint 𝛾(1) is its root

We shall also say that the slit 𝛾 lands at the point 𝑝 = 𝛾(1), which is then
called its landing point

Geometry and Loewner Theory



...and slits

Let 𝑓∶𝔻 𝗂𝗇𝗍𝗈−−−→ ℂ̂ be a conformal mapping and let 𝛾 be a slit in 𝐷∶=𝑓(𝔻).

Theorem

The set 𝑓 −1 (𝛾) is a slit in𝔻.

Note that this means that if Γ∶ [0, 𝑇 ]⟶𝔻 is any parametrization of 𝛾, then
𝑓 −1∘Γ|[0,𝑇 ) has a continuous extension to the point 𝑡 = 𝑇 .
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why slits?!
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our setting...

Let 𝑔 ∶ ℍ ⟶ 𝐻 be a conformal map with 𝐻 ∶= ℍ ⧵ 𝛾 and 𝑔(∞) = ∞.

Theorem

Let 𝑤 ∈ 𝜕𝐻 and u� ∶= 𝑔−1 ({𝑤}).
Then the map 𝑔 establishes a bijective correspondence between the connected
components of 𝜕ℍ ⧵ u� and those of 𝜕𝐻 ⧵ {𝑤}.

In particular, the set u� consists of 𝜈 ∈ ℕ pairwise distinct points if and only
if 𝜕𝐻 ⧵ {𝑤} has exactly 𝜈 connected components.
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our setting...

Moreover, letting 𝜉0 and 𝜔0 be respectively the root and the tip of the slit 𝛾,
we have:

▶ the preimage 𝑔−1(𝜉0) of 𝜉0 consists exactly of two points 𝛼, 𝛽 ∈ ℝ, 𝛼 < 𝛽
▶ the preimage 𝑔−1(𝜔0) of 𝜔0 consists of a unique point 𝜆 ∈ (𝛼, 𝛽)
▶ 𝑔 maps ℝ̂ ⧵ [𝛼, 𝛽] homeomorphically onto ℝ̂ ⧵ {𝜉0}
▶ each of the segments [𝛼,𝜆] and [𝜆, 𝛽] is mapped homeomorphically

onto 𝛾̄ ∶= 𝛾 ∪ {𝜉0} by 𝑔
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howtofind such a function?!
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howtofind such a function?! > the "chordal" riemannmapping theorem

Theorem

Let 𝛾 be a slit in the upper half-planeℍ landing at some point 𝜉0 ∈ ℝ. Set
𝛾̄ ∶= 𝛾 ∪ {𝜉0}.
There exists a unique single-slit mapping 𝑔𝛾 ∶ ℍ 𝗈𝗇𝗍𝗈−−−−→ 𝐻 ∶= ℍ ⧵ 𝛾 such that

lim𝑧→∞ 𝑔(𝑧) − 𝑧 = 0 (1)

Moreover, if u� ∶= 𝑔−1
𝛾 (𝛾̄) and 𝛾̄∗ is the reflection of 𝛾̄ w.r.t. ℝ, then

▶ 𝑔𝛾|ℍ extends to a conformal map 𝑔∗
𝛾∶ ℂ̂ ⧵ u� 𝗈𝗇𝗍𝗈−−−−→ ℂ̂ ⧵ (𝛾̄ ∪ 𝛾̄∗)

▶ 𝑔∗
𝛾 has a Laurent expansion at ∞ of the form

𝑔∗
𝛾(𝑧) = 𝑧 +

∞

∑
𝑛=1

𝑐𝑛𝑧−𝑛,

with 𝑐𝑛 ∈ ℝ for all 𝑛 ∈ ℕ and 𝑐1 < 0
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andhowtouse this fact?!
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andhowtouse this fact?!

Let Γ∶ [0, 𝑇 ] ⟶ ℍ be a parametrization of the slit 𝛾.

Then, for any 𝑡 ∈ [0, 𝑇 ), we have
▶ a slit 𝛾𝑡 inℍ defined as 𝛾𝑡 ∶= Γ[0, 𝑡]
▶ a domain 𝐻𝑡 ∶= ℍ ⧵ 𝛾𝑡
▶ a conformal map 𝑔𝑡 ∶ ℍ ⟶ ℍ ⧵ 𝛾𝑡, with 𝑔𝑡(𝑧) = 𝑧 + ∑∞

𝑛=1 𝑐𝑛(𝑡)𝑧−𝑛,

Remark: to include the case 𝑡 = 𝑇 we set 𝛾𝑇 ∶= ∅ and 𝑔𝑇 ∶= idℍ

Note that for any 𝑡 < 𝑠
▶ the slits 𝛾𝑡 and 𝛾𝑠 share the same root 𝜉0
▶ 𝛾𝑠 ⊂ 𝛾𝑡
▶ 𝐻𝑡 ⊂ 𝐻𝑠
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andhowtouse this fact?!

Now, for 𝑠 ≤ 𝑡 in [0, 𝑇 ] and 𝑧 ∈ ℍ, define

𝜙𝑠,𝑡(𝑧)∶= (𝑔−1
𝑡 ∘ 𝑔𝑠)(𝑧)

Furthermore, set

𝜆(𝑡)∶= 𝑔−1
𝑡 (Γ(𝑡)) ∈ ℝ

▶ u�𝑠,𝑡 ∶= 𝑔−1
𝑡 (Γ([𝑠, 𝑡))) ⊂ ℍ

▶ ̄u�𝑠,𝑡 ∶= 𝑔−1
𝑡 (Γ([𝑠, 𝑡])) = u�𝑠,𝑡 ∪ {𝜆(𝑡)}

▶ u�𝑠,𝑡 ∶= 𝑔−1
𝑠 (Γ([𝑠, 𝑡])) ⊂ ℝ
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andhowtouse this fact?!

ℝ ℝ

ℝ

𝑔𝑠

𝜑𝑠,𝑡 𝑔−1
𝑡
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andhowtouse this fact?!
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andhowtouse this fact?!

𝜆(𝑠)

u�𝑠,𝑡
ℝ ℝ

Γ(𝑇 )

Γ(𝑡)
Γ(𝑠)

Γ(0)

ℝ

𝜑𝑠,𝑡(𝜆(𝑠))

𝜆(𝑡)

u� 𝑠,𝑡

𝑔𝑠

𝜑𝑠,𝑡 𝑔−1
𝑡
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howtouse this fact > the evolution family

definition

the family {𝜙𝑠,𝑡}𝑠,𝑡 is called the evolution family associated with 𝛾
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howtouse this fact > the evolution family

definition

the family {𝜙𝑠,𝑡}𝑠,𝑡 is called the evolution family associated with 𝛾

Note that for any 0 ≤ 𝑠 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇 we have
▶ 𝜙𝑠,𝑡 is a conformal map fromℍ ontoℍ ⧵ u�𝑠,𝑡
▶ lim𝑧→∞ 𝜙𝑠,𝑡(𝑧) − 𝑧 = 0
▶ 𝜙𝑠,𝑡|ℍ extends to a conformal map 𝜙∗

𝑠,𝑡 ∶ ℂ̂ ⧵ u�𝑠,𝑡
𝗈𝗇𝗍𝗈−−−−→ ℂ̂ ⧵ ( ̄u�𝑠,𝑡 ∪ ̄u� ∗

𝑠,𝑡)
with ̄u� ∗

𝑠,𝑡 being the reflection of ̄u�𝑠,𝑡 w.r.t. ℝ
▶ 𝜙∗

𝑠,𝑡(𝑧) = 𝑧 + ∑+∞
𝑛=1 𝑐𝑛(𝑠, 𝑡)𝑧−𝑛 with 𝑐1(𝑠, 𝑡) = 𝑐1(𝑠) − 𝑐1(𝑡) < 0
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howtouse this fact > the evolution family

definition

the family {𝜙𝑠,𝑡}𝑠,𝑡 is called the evolution family associated with 𝛾

and we also have that

▶ 𝜙𝑠,𝑡 = 𝜙𝑢,𝑡 ∘ 𝜙𝑠,𝑢

▶ 𝜙𝑠,𝑡(𝜁) = 𝜁 +
1
𝜋 ∫u�𝑠,𝑡

𝕀𝗆{𝜙𝑠,𝑡(𝜉)}
𝜉 − 𝜁 𝑑𝜉 for all 𝜁 ∈ ℍ

▶ 𝑡 − 𝑠 =
1
𝜋 ∫u�𝑠,𝑡

𝕀𝗆{𝜙𝑠,𝑡(𝜉)} 𝑑𝜉
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howtouse this fact

Furthermore,

▶ for any fixed 𝑡 ∈ (0, 𝑇 ], the arc ̄u�𝑢,𝑡 shrinks to the point 𝜆(𝑡) and the
segment u�𝑢,𝑡 tends to the same point as 𝑢 ↑ 𝑡

▶ for any fixed 𝑠 ∈ [0, 𝑇 ), the segment u�𝑠,𝑢 shrinks to the point 𝜆(𝑠) and
the arc ̄u�𝑠,𝑢 tends to the same point as 𝑢 ↓ 𝑠

▶ the function [0, 𝑇 ] ∋ 𝑡 ↦ 𝜆(𝑡) is continuous
▶ the function [0, 𝑇 ] ∋ 𝑡 ↦ 𝑐1(𝑡) is continuous and strictly increasing
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howtouse this fact > the standard parametrization

definition

a parametrization Γ∶ [0, 𝑇 ] ⟶ ℍ of the slit 𝛾 is said to be a standard
parametrization of 𝛾 if 𝑐1(𝑡) = 𝑡 − 𝑇 for all 𝑡 ∈ [0, 𝑇 ]

proposition

There exists a unique standard parametrization Γ of the slit 𝛾.

Remark: in some applications, it seems to be convenient to rescale the
standard parametrization in such a way that 𝑐1(𝑡) = 2(𝑡 − 𝑇 ).
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describing the evolution > the (classical) kufarev-loewner theorem

Theorem
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⎧⎪
⎨
⎪⎩

Ḟ(𝑡) =
1

𝜆(𝑡) − F(𝑡)
, 𝑡∈[𝑠, 𝑇 ]

F(𝑠) = 𝑧

The equation above is called the chordal Loewner ODE.
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the (classical) kufarev-loewner theorem > sketch of the proof
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the (classical) kufarev-loewner theorem > sketch of the proof

Recall that we have

▶ 𝜙𝑠,𝑡(𝜁) − 𝜁 =
1
𝜋 ∫u�𝑠,𝑡

𝕀𝗆{𝜙𝑠,𝑡(𝜉)}
𝜉 − 𝜁 𝑑𝜉 for all 𝜁 ∈ ℍ

and

▶ 𝑡 − 𝑠 =
1
𝜋 ∫u�𝑠,𝑡

𝕀𝗆{𝜙𝑠,𝑡(𝜉)} 𝑑𝜉

Assume 𝑠 < 𝑡 and take any 𝑢 ∈ [𝑠, 𝑡). Taking 𝜁 ∶= 𝜙𝑠,𝑢(𝑧), we get:

𝜙𝑠,𝑡(𝑧) − 𝜙𝑠,𝑢(𝑧)
𝑡 − 𝑢

=
𝜙𝑢,𝑡(𝜁) − 𝜁

𝑡 − 𝑢
=

∫u�𝑢,𝑡

𝕀𝗆{𝜙𝑢,𝑡(𝜉)}
𝜉 − 𝜙𝑠,𝑢(𝑧)

𝑑𝜉

∫u�𝑢,𝑡

𝕀𝗆{𝜙𝑢,𝑡(𝜉)} 𝑑𝜉
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the (classical) kufarev-loewner theorem > sketch of the proof
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the (classical) kufarev-loewner theorem > sketch of the proof

Applying the Integral Mean Value Theorem, separately for the real and
imaginary parts of 1

𝜉−𝜙𝑠,𝑢(𝑧) , we may write

𝜙𝑠,𝑡(𝑧) − 𝜙𝑠,𝑢(𝑧)
𝑡 − 𝑢

=
1

𝜉𝑢,𝑡 − 𝜙𝑠,𝑢(𝑧)

for some 𝜉𝑢,𝑡 ∈ u�𝑢,𝑡.

Since both u�𝑢,𝑡 and u�𝑢,𝑡 tend to 𝜆(𝑡) as 𝑢 ↑ 𝑡, we see
▶ 𝜙𝑠,𝑢(𝑧) → 𝜙𝑠,𝑡(𝑧)
▶ 𝜉𝑢,𝑡 → 𝜆(𝑡)

So we finally get that

𝜙𝑠,𝑡(𝑧) − 𝜙𝑠,𝑢(𝑧)
𝑡 − 𝑢

⟶
1

𝜆(𝑡) − 𝜙𝑠,𝑡(𝑧)

and 𝜙𝑠,𝑡(𝑧) is differentiable from the left.
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the (classical) kufarev-loewner theorem > sketch of the proof

Analogously, assuming 𝑡 < 𝑇 and taking 𝑢 ∈ [𝑡, 𝑇 ), we see that

𝜙𝑠,𝑢(𝑧) − 𝜙𝑠,𝑡(𝑧)
𝑢 − 𝑡

⟶
1

𝜆(𝑡) − 𝜙𝑠,𝑡(𝑧)

as 𝑢 ↓ 𝑡.

Thus 𝜙𝑠,𝑡(𝑧) is also differentiable from the right.

Since the function 𝜆 is continuous from [0, 𝑇 ] to ℝ, we have done!
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the (classical) kufarev-loewner theorem > sketch of the proof
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the (classical) kufarev-loewner theorem > sketch of the proof

As for the uniqueness, notice that the right hand side is of the form 𝐺(F(𝑡), 𝑡)
where the vector field

𝐺(𝑤) =
1

𝜆(𝑡) − 𝑤
is Lipschitz continuous in its first variable locally uniformly inℍ and the
Lipschitz constant does not depend on 𝑡.

So, the uniqueness of the solution follows now from the Cauchy Theorem for
ODE.

Geometry and Loewner Theory



the (classical) kufarev-loewner theorem > remarks
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the (classical) kufarev-loewner theorem > remark#1

Recall that 𝜙𝑠,𝑇 = 𝑔𝑠 for all 𝑠 ∈ [0, 𝑇 ].

Then, since 𝑔𝑡(𝑧) is differentiable jointly in 𝑧 and 𝑡, we see that it follows from
the chordal Loewner ODE that

𝜕𝑔𝑡(𝑧)
𝜕𝑡

= −
𝑔𝑡′(𝑧)
𝜆(𝑡) − 𝑧

The last equation is know as the chordal Loewner PDE.
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the (classical) kufarev-loewner theorem > remark#2

Consider now the family of the inverse conformal mappings (ℎ𝑡)𝑡∈[0,𝑇 ] with

ℎ𝑡 ∶= 𝑔−1
𝑡 ∶ ℍ ⧵ 𝛾𝑡 ⟶ ℍ

Then 𝑔𝑡 ∘ ℎ𝑡 = id.

Differentiating both sides by 𝑡 we get that 𝑡 ↦ ℎ𝑡(𝑧) solves the chordal
Loewner ODE, i.e.

𝜕ℎ𝑡(𝑧)
𝜕𝑡

=
1

𝜆(𝑡) − ℎ𝑡(𝑧)
for all 𝑡 ∈ [0, 𝑇 ] and 𝑧 ∈ 𝐻𝑡, with initial conditions given by

ℎ𝑡|𝑡=𝑇 = id
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the (classical) kufarev-loewner theorem > remark#2
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the (classical) kufarev-loewner theorem > remark#2

Set now 𝜎 = 𝑇 − 𝑡. Then we see that the previous equation becomes

𝜕ℎ𝜎(𝑧)
𝜕𝜎 =

1
ℎ𝜎(𝑧) − 𝜆(𝜎)

with the new initial data given by

ℎ𝜎|𝜎=0 = id

This allows us
▶ to consider all 𝜎 ≥ 0 and thus Jordan arcs Γ∶ [0, +∞] → ℍ
▶ to give a reasonable meaning to the word “chordal”
▶ to get 𝑆𝐿𝐸𝑘
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the (classical) kufarev-loewner theorem > remark#2
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with the new initial data given by
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▶ to give a reasonable meaning to the word “chordal”
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the (classical) kufarev-loewner theorem > remark#3

Let 𝒞 ∶ 𝔻 ⟶ ℍ the Cayley map, i.e. let

𝒞 (𝑧) = 𝑖
𝑧 + 1
1 − 𝑧

and consider 𝜓𝑠,𝑡(𝑧)∶= 𝒞 −1 ∘ 𝜙𝑠,𝑡 ∘ 𝒞 (𝑧).
Then

𝜕
𝜕𝑡[𝜓𝑠,𝑡(𝑧)] =

𝜕
𝜕𝑡[𝒞 −1(𝜙𝑠,𝑡(𝒞 (𝑧)))]

from which we get that

𝜕
𝜕𝑡[𝜓𝑠,𝑡] = − (1 − 𝜓𝑠,𝑡)

2 1
𝜓𝑠,𝑡+1
1−𝜓𝑠,𝑡

+ 𝑖𝜆(𝑡)
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the (classical) kufarev-loewner theorem > remark#3
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the (classical) kufarev-loewner theorem > remark#3

Note that ℝ𝖾 1
𝑤 + 1
1 − 𝑤

+ 𝑖𝜆(𝑡)
≥ 0

So, calling 𝑝(𝑤, 𝑡) =
1

𝑤+1
1−𝑤 + 𝑖𝜆

, we can write

𝜕
𝜕𝑡[𝜓𝑠,𝑡] = − (1 − 𝜓𝑠,𝑡)

2 𝑝(𝜓𝑠,𝑡, 𝑡)

and we see that the (classical) chordal equation is a particular case of the
general Loewner equation given by

𝑤̇ = (𝑤 − 𝜏)(1 − 𝜏𝑤)𝑝(𝑤, 𝑡)
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the (classical) kufarev-loewner theorem > remark#3
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back to geometric function theory

Recall that to prove that 𝜙𝑠,𝑡 mapℍ onto the slit domainsℍ ⧵ u�𝑠,𝑡 we made
use of the following fact

theorem

If 𝑓 is conformal, then 𝑓 −1(𝛾) is a slit in𝔻.

that is the preimage under a univalent function in𝔻 of a slit in its image is a
slit in𝔻.
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preimages of slits in the complex plane

Recall that to prove that 𝜙𝑠,𝑡 is mapℍ onto the slit domainℍ ⧵ u�𝑠,𝑡 we made
use of the following fact

theorem

If 𝑓 is a biholomorphism, then 𝑓 −1(𝛾) is a slit in𝔻.

that is the preimage under a univalent function in𝔻 of a slit in its image is a
slit in𝔻.
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what about preimages of slits in higher dimensions?
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preimages of slits in higher dimensions > a counterexample

Unfortunately,

There exist univalent functions 𝑓 ∶ 𝔹𝑛 ⟶ ℂ𝑛 such that, given a slit 𝛾 in the
image 𝑓(𝔹𝑛), the set 𝑓 −1(𝛾) is not a slit in 𝔹𝑛.

We will prove the existence by construction:

There exist an unbounded univalent function 𝑓 ∶ 𝔹2 ⟶ ℂ2 and a slit 𝛾 in
𝑓(𝔹2)⊂ℂ2 landing at ∞ such that 𝑓 −1(𝛾) is not a slit in 𝔹2.

and to do that, we will make use of the following

proposition

Let 𝜎 be a boundary path in𝔻. There exists a non-constant holomorphic
function 𝑔 ∶ 𝔻 ⟶ ℂ such that 𝑔 → ∞ along 𝜎.
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preimages of slits in higher dimensions > the construction

Let 𝜎 be a Jordan boundary path in𝔻 and suppose it is not a slit.
Let 𝑔 ∶ 𝔻 ⟶ ℂ be the function given by the previous proposition.
Define the map 𝑓 ∶ 𝔹2 ⟶ ℂ2 as

𝑓(𝑧, 𝑤) ∶= ( 𝑧 + 𝑤2 + 𝑔2(𝑧) + 𝑤𝑔(𝑧) , 𝑤 + 𝑔(𝑧) )

𝑓 is the function we are looking for! Indeed:
▶ it is univalent
▶ 𝐷 ∶= 𝑓(𝔹2) is an unbounded domain of ℂ2

▶ 𝑓 ⟶ ∞ along 𝜎
▶ 𝛾 is a slit in 𝐷
▶ 𝑓 −1(𝛾) is not a slit in 𝔹2
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Let 𝑔 ∶ 𝔻 ⟶ ℂ be the function given by the previous proposition.
Define the map 𝑓 ∶ 𝔹2 ⟶ ℂ2 as

𝑓(𝑧, 𝑤) ∶= ( 𝑧 + 𝑤2 + 𝑔2(𝑧) + 𝑤𝑔(𝑧) , 𝑤 + 𝑔(𝑧) )

𝑓 is the function we are looking for! Indeed:
▶ it is univalent
▶ 𝐷 ∶= 𝑓(𝔹2) is an unbounded domain of ℂ2

▶ 𝑓 ⟶ ∞ along 𝜎
▶ 𝛾 is a slit in 𝐷
▶ 𝑓 −1(𝛾) is not a slit in 𝔹2
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preimages of slits in higher dimensions

Note that:
▶ the construction does not rely on any peculiar property

of the unit ball 𝔹2

▶ it only depends on Jordan boundary paths in𝔻
and automorphisms of ℂ2

As a consequence:

There exist univalent functions 𝑓 ∶ 𝔻𝑛 ⟶ ℂ𝑛 such that, given a slit 𝛾 in the
image 𝑓(𝔻𝑛), the set 𝑓 −1(𝛾) is not a slit in𝔻𝑛.
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preimages of slits in higher dimensions

Note that:
▶ the construction does not rely on any peculiar property

of the unit ball 𝔹2

▶ it only depends on Jordan boundary paths in𝔻
and automorphisms of ℂ2

As a consequence:

There exist univalent functions 𝑓 ∶ 𝔻𝑛 ⟶ ℂ𝑛 such that, given a slit 𝛾 in the
image 𝑓(𝔻𝑛), the set 𝑓 −1(𝛾) is not a slit in𝔻𝑛.
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the end

Grazie a tutti per l’attenzione!
(arigatōgozaimasu)
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