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arecs...

Let D be a domainin C", n > 1.

definition

A subset ¢ of D is called a Jordan arc in D if there exists a continuous
injective function X : [0, 1) — D such that Z([O, 1)) =0

=] = = = DA
Geometry and Loewner Theory



arecs...

Let D be a domainin C", n > 1.

definition
A subset ¢ of D is called a Jordan arc in D if there exists a continuous
injective function X : [0, 1) — D such that Z([O, 1)) =0

» if oisan arcin D and X is a function as given by the above definition,
we will say that  is a parameterization of the arc o

» if G is the closure of o in D, we shall also say that £(0) and X(1) are the
endpoints of ¢ in D
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arecs...

Let D be a domainin C", n > 1.

definition
A subset ¢ of D is called a Jordan arc in D if there exists a continuous
injective function X : [0, 1) — D such that Z([O, 1)) =0

» if oisan arcin D and X is a function as given by the above definition,
we will say that  is a parameterization of the arc o

» if G is the closure of o in D, we shall also say that £(0) and X(1) are the
endpoints of ¢ in D

Notation: ¢ will denote both the arc and its parameterization
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arecs...

definition
The set

>0
is called the w-limit of the arc o in D

() o(1-&D) = Q@)
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... boundary paths...

definition
The set

() o(1-&D) = Q@)

>0
is called the w-limit of the arc o in D

definition

A Jordan arc ¢ in D is said to be a Jordan boundary path in D if Q(c) C 0D
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... boundary paths...

definition
The set
() o(1-&D) = Q@)

>0

is called the w-limit of the arc o in D

definition
A Jordan arc ¢ in D is said to be a Jordan boundary path in D if Q(c) C 0D

Note that if ¢ is a boundary path in some domain D of the complex plane C,
then )(0) is either a subarc of dD or a point.
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...andslits

definition

singleton.

A Jordan boundary path y in D is said to be a slit in D if its w-limit Q(0) is a
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...andslits

definition

A Jordan boundary path y in D is said to be a slit in D if its w-limit Q(0) is a
singleton.

Note that y([0,1)) C D and y(1) € 0D
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...andslits

definition

A Jordan boundary path y in D is said to be a slit in D if its w-limit Q(0) is a
singleton.

Note that y([0,1)) C D and y(1) € 0D

Given asslit y in D, we will say that
» the endpoint y(0) is its tip
» the endpoint (1) is its root

We shall also say that the slit y lands at the point p = y(1), which is then
called its landing point
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...andslits

Let f: D2,

C be a conformal mapping and let y be aslitin D:= f (D).

Theorem

The set ! ()/) is a slit in D.
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...andslits
Let f: D2,

C be a conformal mapping and let y be aslitin D:= f (D).
Theorem

The set f~! ()/) is a slit in D.

Note that this means that if I': [0,7]— D is any parametrization of y, then
flell 0.1 has a continuous extension to the pointt =T.
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why slits?!
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our setting...

Let g : H — H be a conformal map with H :=IH \ y and g() = .

Theorem
Letw € 0H and W = g~ ({w)).

Then the map g establishes a bijective correspondence between the connected
components of 0IH \ W and those of 0H \ {w}.

In particular, the set W consists of v € IN pairwise distinct points if and only
if 0H \ {w} has exactly v connected components.
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our setting...

Moreover, letting &, and @) be respectively the root and the tip of the slit y,
we have:

» the preimage g=!(&) of & consists exactly of two points @, € R, a < 8

» the preimage g~!(wy) of | consists of a unique point A € (&, )

» g maps R\ [a, Bl homeomorphically onto R\ {&)

» each of the segments [, A] and [A, ] is mapped homeomorphically
ontoy :=yU{&}byg
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how to find such a function?!
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how to find such a function?! > the "chordal" riemann mapping theorem

Theorem

Lety be a slit in the upper half-plane IH landing at some point &, € IR. Set
v i=yu i}

There exists a unique single-slit mapping g, : H M, H:=H \ 7 such that

Jim &) =2 =0

(M

4
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how to find such a function?! > the "chordal" riemann mapping theorem

Theorem

Lety be a slit in the upper half-plane IH landing at some point &, € IR. Set
v i=yu i}

There exists a unique single-slit mapping g, : H —— oL, H:=H \ 7 such that

lim g(z) —z=0 (1)

4

Moreover, if C = g;l()_/) and y* is the reflection of  w.r.t. R, then

> g7|]H extends to a conformal map gJ; : C\c N \ (yuy")
» g has a Laurent expansion at oo of the form

(o)
g;’j(z) =z+ Z c,z ",
n=1

with ¢, € Rforalln € N and c; <0
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and how to use this fact?!
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and how to use this fact?!

LetT: [0,7] — Hbe a parametrization of the slit y.
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and how to use this fact?!

LetT: [0,7] — Hbe a parametrization of the slit y.
Then, for any t € [0, T), we have

» aslit y; in IH defined as y, :=TI'[0, 7]
» adomain H,:=H\ y,

» aconformalmap g,: H— H\ y,, with g,(z) =z + Z:’_l c,(Hz™"

=] = = = DA
Geometry and Loewner Theory



and how to use this fact?!

LetT: [0,7] — Hbe a parametrization of the slit y.
Then, for any t € [0, T), we have

» aslit y; in IH defined as y, :=TI'[0, 7]
» adomain H,:=H\ y,

» aconformalmap g,: H— H\ y,, with g,(z) =z + 2:;1 c,(Hz™"

Remark: to include the case t = T we set y; '= @ and g :=idy
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and how to use this fact?!

LetT: [0,7] — Hbe a parametrization of the slit y.
Then, for any t € [0, T), we have

» aslit y; in IH defined as y, :=TI'[0, 7]
» adomain H,:=H\ y,

» aconformalmap g,: H— H\ y,, with g,(z) =z + 2:;1 c,(Hz™"

Note that for any < s

» the slits y, and y share the same root &
> Vs CVi

» H,C H,

=} =2 = = A
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and how to use this fact?!

Now, for s <tin [0,T] and z € H, define

(z)s,t(z) = (gt_l ° gs)(z)
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and how to use this fact?!

s

/\)

|

Ps.
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and how to use this fact?!

Now, for s <tin [0,T] and z € H, define

(z)s,t(z) = (gt_l ogs)(z)

Furthermore, set
» A1) =g ' (T()) € R
> Jo =g (T(s.0)) ¢ H
> J= g (TLs, 1) = Ty, U {AWD)}
> C, =g (T(s.1)) € R

[m] = = =
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and how to use this fact?!

8s

/\

T©0)
T TG
'@
A(s)
Tme—e——ar R R
Css I(T)
Pst

A1)
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how to use this fact > the evolution family

definition

the family {¢;,},, is called the evolution family associated with y

o = = = DA
Geometry and Loewner Theory



how to use this fact > the evolution family

definition

the family {¢;,},, is called the evolution family associated with y

Note that forany 0 < s <u <t < T we have

» ¢, is a conformal map from H onto H \ J,
» lim,_ ¢, (2)—z=0

» ¢, .|p extends to a conformal map ¢5, : C\ Cs, oL €\ (T v Js)
with J% being the reflection of J, w.rt. R

_) i
> ¢i(2) =z + X5 ¢,(s, 027" with ¢y(s,1) = ¢;(s) — ¢, (1) < 0

=] = = = wa
Geometry and Loewner Theory



how to use this fact > the evolution family

definition

the family {¢;,},, is called the evolution family associated with y
and we also have that

> (‘Ps,t = ¢)u,t ° (Ps,u

1 ]I s,t
> ¢s,t<c>=c+E/M

Cos

E-C

1

b r—s= —/]Im{qbs,,(é)} dé
T( Cs,t
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how to use this fact

Furthermore,

» for any fixed ¢ € (0, T}, the arc J,; shrinks to the point A(#) and the
segment C,, tends to the same point asu 1 ¢

» for any fixed s € [0, T), the segment C; , shrinks to the point A(s) and
the arc J;, tends to the same point asu | s

» the function [0, T] 2 t — A(¢) is continuous

» the function [0,T] 3 ¢ — ¢(?) is continuous and strictly increasing
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how to use this fact > thestandard parametrization

definition

a parametrizationI': [0,T] — H of the slit y is said to be a standard
parametrization of y if ¢;(t) =t =T forallt € [0, T]
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how to use this fact > thestandard parametrization

definition

a parametrizationI': [0,T] — H of the slit y is said to be a standard
parametrization of y if ¢;(t) =t =T forallt € [0, T]

proposition

There exists a unique standard parametrization I of the slit y.
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how to use this fact > thestandard parametrization

definition

a parametrizationT': [0,T] — H of the slit y is said to be a standard
parametrization of y if ¢(t) =t — T for all t € [0, T']

proposition J

There exists a unique standard parametrization I of the slit y.

Remark: in some applications, it seems to be convenient to rescale the
standard parametrization in such a way that ¢;(¥) = 2(t — T)).
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how to describe the evolution now?
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describing the evolution > the (classical) kufarev-loewner theorem

Theorem

There exists a unique continuous function A : [0,T] — R such that,
forevery s € [0,T) and every z € IH, the function

[s,T]1 21— w, (1) := ¢, ,(2)

is the unique solution to the Cauchy problem

F(t) = tels, T]

1
A@®)—F@) "’
F(s) =z

The equation above is called the chordal Loewner ODE.
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the (classical) kufarev-loewner theorem > sketch of the proof
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the (classical) kufarev-loewner theorem > sketch of the proof

Recall that we have
1 [ Im{g,(E)}
> Qbs,t(C)_C = E/CST dé forall CeH
and

1
> t—s= —/]Im{qbs,,(é)} dé
e,
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the (classical) kufarev-loewner theorem > sketch of the proof

Recall that we have
1 /I )
> %(C)—c:_/m
Tt
and

. T_C dé  forall

ceH

1
> t—s= —/]Im{qbs,,(é)} dé
e,

Assume s < t and take any u € [s,1). Taking C := ¢ ,(2), we get

/ Im{¢, (&)} dE
P5.1(2) = Py, (2) _ 0, (0) = C _Jey, &= ¢su(2)
t—u B t—u B

/ Im{ ¢, (&)} d&
Cuy
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the (classical) kufarev-loewner theorem > sketch of the proof

1
‘S_‘i)s,u(z) >

Applying the Integral Mean Value Theorem, separately for the real and
imaginary parts of we may write

1
5u,z‘ - ¢s,u(z)

(Ps,t(z) - (Ps,u(z) _

t—u

forsome &,, € C,,
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the (classical) kufarev-loewner theorem > sketch of the proof

1
‘S_(i)s,u(z) >

Applying the Integral Mean Value Theorem, separately for the real and
imaginary parts of we may write

(Ps,t(z) - (Ps,u(z) _

t—u

1
5u,z‘ - ¢s,u(z)

forsome &,, € C,,

Since both C,; and J,, tend to A(r) as u 1 ¢, we see
> ¢s,u(z) - ¢s,t(z)

> &= A
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the (classical) kufarev-loewner theorem > sketch of the proof

Applying the Integral Mean Value Theorem, separately for the real and
imaginary parts of

m, we may write
(Ps,t(z) - (Ps,u(z) _ 1
I—u 5u,z‘ - ¢s,u(z)
forsome &,, € C,,
Since both C,; and J,, tend to A(r) as u 1 ¢, we see
> ¢s,u(z) - ¢s,t(z)
> S = A
So we finally get that

¢s,t(z) - qbs,u(z) 1
—
I—u At) — (z)s,t(Z)
and ¢, ,(z) is differentiable from the left.

=] = = = wa
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the (classical) kufarev-loewner theorem > sketch of the proof

Analogously, assuming t < T and taking u € [t,T), we see that

¢s,u(z) - (Ps,t(z) N 1
u—t A) = ¢, (2)
asu |t

Thus ¢, ,(z) is also differentiable from the right.
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the (classical) kufarev-loewner theorem > sketch of the proof

Analogously, assuming t < T and taking u € [t,T), we see that

(Ps,u(z) - (Ps,t(z) N 1
u—t A1) = ¢ ((2)
asu |t

Thus ¢, ,(z) is also differentiable from the right.

Since the function A is continuous from [0, T'] to IR, we have done!
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the (classical) kufarev-loewner theorem > sketch of the proof

As for the uniqueness, notice that the right hand side is of the form G(F(t), t)
where the vector field

I
=T —w

is Lipschitz continuous in its first variable locally uniformly in IH and the
Lipschitz constant does not depend on ¢.

ODE.

So, the uniqueness of the solution follows now from the Cauchy Theorem for

o = = E DA
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the (classical) kufarev-loewner theorem > remarks
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the (classical) kufarev-loewner theorem > remark #1

Recall that ¢, = g, for all s € [0, T].

Then, since g,(z) is differentiable jointly in z and ¢, we see that it follows from
the chordal Loewner ODE that

dg,(2) _

gt,(z)
ot

T A -z

The last equation is know as the chordal Loewner PDE.
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the (classical) kufarev-loewner theorem > remark #2

Consider now the family of the inverse conformal mappings (4,),c[0. ] With
Then g, o h, = id.

ho=g': H\y,—H

o = = = DA
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the (classical) kufarev-loewner theorem > remark #2

Consider now the family of the inverse conformal mappings (4,),c[0. ] With

ho=g H\y, —H
Then g, o h, = id.

Differentiating both sides by t we get that ¢ — h,(z) solves the chordal
Loewner ODE, i.e.

0h,(z) _

1
ot

AWM = hy(2)
forallt € [0,T] and z € H,, with initial conditions given by

hyli=r =1d

=} =2 = = A
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the (classical) kufarev-loewner theorem > remark #2

Set now 0 = T —t. Then we see that the previous equation becomes

oh,(z) 1
0o hy(z) - A(0)
with the new initial data given by
hslo—o = id

=] = = = DA
Geometry and Loewner Theory



the (classical) kufarev-loewner theorem > remark #2

Set now 0 = T —t. Then we see that the previous equation becomes
oh,(z) 1
0o hy(z) - A(0)

with the new initial data given by

hola:O =id
This allows us

» to consider all ¢ > 0 and thus Jordan arcs T : [0, +o0] — H
> to give a reasonable meaning to the word “chordal”
» toget SLE,

=} =2 = = A
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the (classical) kufarev-loewner theorem > remark #3

Let € : ID — H the Cayley map, i.e. let

+1
G(z) =i
1—-2z

and consider Y, ,(z) := &l Qg0 €(2).
Then

%[%(z)] = %[“61 (9:4(52)]

o = = = DA
Geometry and Loewner Theory



the (classical) kufarev-loewner theorem > remark #3

Let € : ID — H the Cayley map, i.e. let

+1
G(z) =i

and consider Y, ,(z) := Gl oy, B(2)
Then
0 0 -1
a0 = 5

from which we get that

slva]=-0

CRCIEN]

Yor)
o Tt %z+1
FE= +iA(1)

=] = = = DA
Geometry and Loewner Theory



the (classical) kufarev-loewner theorem > remark #3

1
Note that Re | >0

—+i/\(t)_
1-—w

1
So, calling p(w, 1) =

vy, , we can write
Tt iA
—Ww

o] =-

(1 - ¢s,t>2 p(lps,t’ t)
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the (classical) kufarev-loewner theorem > remark #3

1
Note that Re | >0

—+i/\(t)_
1-—w

1
So, calling p(w, 1) =

vy, , we can write
Tt iA
—Ww

o] =-

(1 - ¢s,t>2 p(lps,t’ t)

and we see that the (classical) chordal equation is a particular case of the
general Loewner equation given by

w=w-—"1)(1—-7Tw)p(w,t)
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back to geometvic function theory
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back to geometvic function theory

Recall that to prove that ¢, , map H onto the slit domains H \ J;, we made
use of the following fact

theorem
If f is conformal, then f~'(y) is a slit in D. J

o>

[m] = = =
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preimages of slits in the complex plane

Recall that to prove that ¢, is map H onto the slit domain H \ J, we made
use of the following fact

theorem
If f is a biholomorphism, then f~'(y) is a slit in D. J

that is the preimage under a univalent function in ID of a slit in its image is a
slit in ID.

[m] = = =
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what about preimages of slits in higher dimensions?
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preimages of slits in higher dimensions > a counterexample
Unfortunately,

There exist univalent functions f : B” — C”" such that, given a slit y in the
image f(IB"), the set f~!(y) is not a slit in B".

J
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preimages of slits in higher dimensions > a counterexample

Unfortunately,

There exist univalent functions f : B” — C”" such that, given a slit y in the
image f(IB"), the set f~!(y) is not a slit in B". J

We will prove the existence by construction:

There exist an unbounded univalent function f : B> — C? and a slit y in
f(IBz)Ccz landing at oo such that f‘l()/) is not a slit in B2.

aQ >
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preimages of slits in higher dimensions > a counterexample

Unfortunately,

There exist univalent functions f : B” — C”" such that, given a slit y in the
image f(IB"), the set f~!(y) is not a slit in B". J

We will prove the existence by construction:

There exist an unbounded univalent function f : B> — C? and a slit y in
f(IB2)CCz landing at oo such that f‘l(y) is not a slit in B2.

and to do that, we will make use of the following

proposition
Let o be a boundary path inID. There exists a non-constant holomorphic
function g : ID — C such that g — oo along 0.
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preimages of slits in higher dimensions > the construction

Let 0 be a Jordan boundary path in ID and suppose it is not a slit.
Let g: ID — C be the function given by the previous proposition
Define the map f : B> — C? as

f(z,w) = <z+w2+g2(z)+wg(z), w+g(z))

=] = = = DA
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preimages of slits in higher dimensions > the construction
Let 0 be a Jordan boundary path in ID and suppose it is not a slit.

Let g: ID — C be the function given by the previous proposition
Define the map f : B> — C? as

f(z,w) = <z+w2+g2(z)+wg(z), w+g(z))

f is the function we are looking for!
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preimages of slits in higher dimensions > the construction

Define the map f : B> — C? as

Let 0 be a Jordan boundary path in ID and suppose it is not a slit.
Let g: ID — C be the function given by the previous proposition

f(z,w) = <z+w2+g2(z)+wg(z), w+g(z))

f is the function we are looking for! Indeed:
» it is univalent

» f—> o alongo

» D := f(B?)is an unbounded domain of C>
» yisaslitin D

> f_l(y) is not a slit in B2

o = = E DA
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preimages of slits in higher dimensions

Note that:

» the construction does not rely on any peculiar property
of the unit ball B?

and automorphisms of C?
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» it only depends on Jordan boundary paths in ID



preimages of slits in higher dimensions

Note that:
of the unit ball B2

» the construction does not rely on any peculiar property

» it only depends on Jordan boundary paths in ID
and automorphisms of C?

As a consequence:

There exist univalent functions f : D" — C” such that, given a slit y in the
image f(ID"), the set f‘l()/) is not a slit in ID”.
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theend

Grazie a tutti per I’attenzione!

(arigatogozaimasu)
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