Löwner Equations and Dispersionless Integrable Hierarchies

Takashi Takebe

Faculty of Mathematics/ International Laboratory

of Representation Theory and Mathematical Physics,

National Research University — Higher School of Economics,

Moscow, Russia

23 November 2014

International Workshop on Conformal Dynamics and Loewner Theory Tokyo Institute of Technology, Japan

$\S 0.$ Introduction

- Integrable hierarchies = 'solvable' systems with infinitely many variables (e.g., t = (t₁, t₂, t₃, ...)).
- Dispersionless integrable hierarchies = quasi-classical limits of certain integrable hierarchies.
- One-variable reduction: solutions depend on ∞ -many variables only through one function, e.g., $\lambda(t)$.

Today's topic

one-variable reduction of the dispersionless KP (resp. Toda, BKP, DKP) hierarchy \$\product the chordal (resp. radial, quadrant, annulus) Löwner equation.

Plan of the talk:

- 1. Brief introduction to integrable systems.
- 2. KP hierarchy and Toda lattice hierarchy.
- 3. Dispersionless hierarchies.
- 4. Dispersionless Hirota equations.
- 5. dKP hierarchy and chordal Löwner equation.
- 6. Other examples.

<u>Disclaimer</u>: In this talk everything is quite "algebraic":

- "functions" = formal power series
- "operators" = elements of non-commutative rings

Only algebraic structure is studied.

(& "genericity conditions" often omitted, ...)

For systems with *finite* degrees of freedom,

 \exists well established/defined geometric criteria of integrability.

- Frobenius integrability condition
- Liouville integrability condition (for Hamiltonian systems)
 - = "existence of sufficiently many conserved quantities"

Examples: Kepler motion, Tops (Euler, Lagrange, Kowalevski)

How about "integrable systems" with <u>infinite</u> degrees of freedom?

Modern theory of integrable systems began with the discovery of *remarkable solutions of non-linear partial differential equations* = "SOLITONS" in 1960's.

Soliton = particle-like stable solitary wave

Examples of soliton equations:

• KdV equation (1895): u = u(x,t), $u_t - 3uu_x - \frac{1}{4}u_{xxx} = 0$.

• KP equation (1970):
$$u = u(x, y, t)$$
,
 $\frac{3}{4}u_{yy} - (u_t - 3uu_x - \frac{1}{4}u_{xxx})_x = 0.$

- Sine-Gordon equation : u = u(x, t), $u_{tt} u_{xx} \sin u = 0$.
- Toda lattice (1967): $u_n = u_n(t)$, $u_{n,tt} = e^{u_{n-1}-u_n} e^{u_n-u_{n+1}}$.

- Surprisingly, such soliton equations are *solvable* in spite of its nonlinearity!
 - inverse scattering method, Lax pairs
 - algebro-geometric solutions
 - Hirota's bilinear method
 - \implies various generalisation
- Why are they solvable? \implies discovery of
 - infinitely many conserved quantities/ symmetries
 - moduli space of solutions (e.g., ∞ -dimensional Grassmann manifold for KP hierarchy)
 - \implies relation to algebra (e.g., representation theory of ∞ -dimensional Lie algebras).

Let us examine the KP and the Toda lattice hierarchies as examples.

$\S2$ KP hierarchy and Toda lattice hierarchy

KP hierarchy: integrable nonlinear system for $u_i(t)$ (i = 2, 3, ...)w.r.t. $t = (t_1, t_2, t_3, ...)$. $(x = t_1, \partial = \partial/\partial x.)$

The Lax operator: $L = \partial + u_2(t)\partial^{-1} + u_3(t)\partial^{-2} + \cdots$.

Notation: symbols $f(x)\partial^m$ for $m \in \mathbb{Z}$ span an algebra:

$$\left(f(x)\partial^m\right)\left(g(x)\partial^n\right) = \sum_{r=0}^{\infty} \binom{m}{r} fg^{(r)}\partial^{m+n-r}. \quad \left(\binom{m}{r} = \frac{m(m-1)\cdots(m-r+1)}{r!}\right)$$

KP hierarchy: (Lax representation)
(KP)
$$\frac{\partial L}{\partial t_n} = [B_n, L]$$
 $(n = 1, 2, ...; B_n = (L^n)_{\geq 0}).$

Notation: $P = \sum_{n \in \mathbb{Z}} a_n \partial^n \to P_{\geq 0} := \sum_{n \geq 0} a_n \partial^n$.

This includes the KP equation for $u = u_2$:

$$\frac{3}{4}u_{t_2t_2} - \left(u_{t_3} - 3uu_x - \frac{1}{4}u_{xxx}\right)_x = 0$$

 \therefore) First two equations $\frac{\partial L}{\partial t_2} = [B_2, L]$ and $\frac{\partial L}{\partial t_3} = [B_3, L]$ are expanded as

$$\frac{\partial u_2}{\partial t_2} \partial^{-1} + \frac{\partial u_3}{\partial t_2} \partial^{-2} + \dots = (u_2'' + 2u_3') \partial^{-1} + (u_3'' + 2u_4' + 2u_2u_2') \partial^{-2} + \dots$$

$$\frac{\partial u_2}{\partial t_3} \partial^{-1} + \frac{\partial u_3}{\partial t_3} \partial^{-2} + \dots = (3u_3'' + 3u_4' + 6u_2u_2' + u_2'') \partial^{-1} + \dots$$

($(\cdot)' = \partial(\cdot)/\partial x$.) Comparing the coefficients of ∂^{-1} and ∂^{-2} we have

$$\frac{\partial u_2}{\partial t_2} = u_2'' + 2u_3', \qquad \qquad \frac{\partial u_3}{\partial t_2} = u_3'' + 2u_4' + 2u_2u_2', \\
\frac{\partial u_2}{\partial t_3} = 3u_3'' + 3u_4' + 6u_2u_2' + u_2''',$$

Eliminating u_3 and u_4 we obtain the KP equation.

• KP hierarchy

= set of compatibility conditions for the linear problem for $\Psi = \Psi(t;z)$: $L\Psi = z\Psi$, $\frac{\partial\Psi}{\partial t_n} = B_n\Psi$. (z: spectral parameter)

• L satisfies (KP) $\Leftrightarrow \exists \tau(t)$ (tau function) such that

$$\Psi(t;z) = \frac{\tau(t - [z^{-1}])}{\tau(t)} e^{\sum t_n z^n},$$

$$(t = (t_n)_{n=1,2,\dots}, t - [z^{-1}] = (t_n - \frac{z^{-n}}{n})_{n=1,2,\dots})$$

and $\tau(t)$ satisfies a series of bilinear differential equations (the Hirota equations).

- Solutions of the KP hierarchy are parametrised by ∞ -dimensional Grassmann manifold (the Sato Grassmann manifold).
- Hirota equations = defining equations of the Grassmann manifold (Plücker relations)
- ∞ -dimensional symmetry:

 $GL(\infty)$ acts on the Sato Grassmann manifold = $GL(\infty)/P_{\infty/2}$.

(cf. finite dimensional Grassmann manifold = GL(N)/P,

$$P = \left\{ \begin{pmatrix} * & \cdots & * & \\ \vdots & \ddots & \vdots & \\ * & \cdots & * & \\ \hline & & & * & \\ * & \cdots & * & \\ 0 & & & \ddots & \vdots \\ & & & & \ddots & \vdots \\ * & \cdots & * & \end{pmatrix} \right\} . \right)$$

<u>Variants:</u>

• (KP) + constraint $L^2 = \partial^2 + 2u$

 \implies KdV hierarchy, which contains the KdV equation for u. This has the symmetry of $sl(2, \mathbb{C}[t]) \oplus$ (central extension), i.e., $A_1^{(1)}$ -type affine Lie algebra.

- (KP) + constraint $L^* = -\partial L \partial^{-1}$ (Notation: $(a(x)\partial^n)^* := (-\partial)^n a(x)$ is the formal adjoint operator.) \implies BKP hierarchy, which has the symmetry of $so(2\infty + 1)$ $(B_{\infty}$ -type).
- There are CKP and DKP hierarchies corresponding to C_∞ and D_∞ type symmetries, but the definitions are involved.
 (Usually defined by the Hirota bilinear equations.)

Toda lattice hierarchy: $\phi, u_n, \overline{u}_n$: unknown functions of s, $t = (t_n)_{n \in \mathbb{Z}, n \neq 0}$.

,

$$L = e^{\phi} e^{\partial_s} + u_1 + u_2 e^{-\partial_s} + u_3 e^{-2\partial_s} + \cdots$$
$$\bar{L}^{-1} = e^{\phi} e^{-\partial_s} + \bar{u}_1 + \bar{u}_2 e^{\partial_s} + \bar{u}_3 e^{2\partial_s} + \cdots,$$
$$B_n = \begin{cases} (L^n)_{>0} + \frac{1}{2} (L^n)_0, & (n > 0), \\ (\bar{L}^{-n})_{<0} + \frac{1}{2} (\bar{L}^{-n})_0, & (n < 0). \end{cases}$$

Notation:

•
$$e^{n\partial_s}f(s) = f(s+n)$$
: difference operator.

•
$$A = \sum_{n \in \mathbb{Z}} a_n e^{n\partial_s} \to A_S = \sum_{n \in S} a_n e^{n\partial_s}$$
 for $S = ">0"$, "< 0" and "0".

Toda lattice hierarchy: (Lax representation)
(Toda)
$$\frac{\partial L}{\partial t_n} = [B_n, L], \quad \frac{\partial \bar{L}}{\partial t_n} = [B_n, \bar{L}], \quad (n \in \mathbb{Z}, n \neq 0).$$

- Parametrisations of solutions, τ function etc. are known.
- $n = \pm 1 \Longrightarrow$ the 2d Toda equation: $\phi_{t_1t_{-1}}(s) = e^{\phi(s-1)-\phi(s)} - e^{\phi(s)-\phi(s+1)}.$
- 2d Toda eq. + constraint $\phi(s+2) = \phi(s)$ (+ change of variables) \implies Sine-Gordon eq.
- (Toda) + constraint: $L = \overline{L}^{-1}$

 \implies 1d Toda hierarchy (which contains the Toda lattice for ϕ).

§4 Dispersionless hierarchies

Replace

- ∂ , $e^{\partial_s} \rightarrow \text{commutative symbols.}$
- commutator $[,] \rightarrow$ Poisson bracket $\{,\}$.
- \implies dispersionless KP/Toda lattice hierarchies.

<u>dispersionless KP hierarchy</u>: $\partial^n \to w^n$, $\{w, x\} = 1$. $\mathcal{L} = w + u_2(t)w^{-1} + u_3(t)w^{-2} + \cdots, \qquad \mathcal{B}_n = (\mathcal{L}^n)_{\geq 0}.$

$$\left(\mathcal{P}=\sum_{n\in\mathbb{Z}}a_nw^n \to \mathcal{P}_{\geq 0}:=\sum_{n\geq 0}a_nw^n.\right)$$

dKP hierarchy:
$$\frac{\partial \mathcal{L}}{\partial t_n} = \{\mathcal{B}_n, \mathcal{L}\}$$
 $(n = 1, 2, ...).$

dispersionless Toda lattice hierarchy: $e^{n\partial_s} \rightarrow w^n$, $\{w, s\} = w$.

$$\mathcal{L} = e^{\phi} w + u_1 + u_2 w^{-1} + u_3 w^{-2} + \cdots,$$

$$\tilde{\mathcal{L}}^{-1} = e^{\phi} w^{-1} + \bar{u}_1 + \bar{u}_2 w + \bar{u}_3 w^2 + \cdots,$$

$$\mathcal{B}_n = \begin{cases} (\mathcal{L}^n)_{>0} + \frac{1}{2} (\mathcal{L}^n)_0, & (n > 0), \\ (\tilde{\mathcal{L}}^{-n})_{<0} + \frac{1}{2} (\tilde{\mathcal{L}}^{-n})_0, & (n < 0). \end{cases}$$

$$(A = \sum_{n \in \mathbb{Z}} a_n w^n \to A_S := \sum_{n \in S} a_n w^n \text{ for } S = ">0", "<0" \text{ and "0".})$$

dToda hierarchy: $\frac{\partial \mathcal{L}}{\partial t_n} = \{\mathcal{B}_n, \mathcal{L}\}, \quad \frac{\partial \tilde{\mathcal{L}}}{\partial t_n} = \{\mathcal{B}_n, \tilde{\mathcal{L}}\}, \quad (n \in \mathbb{Z}, n \neq 0).$

For dKP/dToda hierarchies, ∞ -dimensional symmetries (w_{∞} -algebra), parametrisation of solutions (\longleftrightarrow canonical transformations) are known. ([Takasaki-T.] 1991–1995)

§5 Dispersionless Hirota equations

(Maybe you feel flavour of complex analysis...)

First obtained in [Takasaki-T. (1995)] as a limit of

the differential Fay identity (\subset Hirota eq.) for KP.

Teo's formulation (2002)

$$\mathcal{L}(t;w) = w + u_1(t)w^{-1} + u_2(t)w^{-2} + \cdots$$

$$k(t;z)$$
: inverse fuction of $\mathcal{L}(t;w)$ with respect to w :

$$\mathcal{L}(t;k(t;z)) = z, \ k(t;\mathcal{L}(t;w)) = w.$$

Grunsky coefficients b_{mn} of k(t; z) (... for the Bieberbach conjecture):

(dH1)
$$\log \frac{k(t;z_1) - k(t;z_2)}{z_1 - z_2} = -\sum_{m,n=1}^{\infty} b_{mn}(t) z_1^{-m} z_2^{-n}.$$

In other words,

$$\mathcal{L}^n + \sum_{m=1}^{\infty} nb_{nm}(t)\mathcal{L}^{-m} = (\text{polynomial in } w) = (\mathcal{L}^n)_{\geq 0}.$$

In particular

(dH2)
$$k(t;z) = z + \sum_{m=1}^{\infty} b_{1,m} z^{-m}.$$

Theorem

 $\mathcal{L}(t;w): \text{ solution of dKP} \iff \text{There exists } \mathcal{F}(t) \text{ such that } \frac{\partial^2 \mathcal{F}}{\partial t_m \partial t_n} = -mnb_{mn}(t).$

(dH1&2) rewritten in terms of $\mathcal{F}(t) \Rightarrow$

dispersionless Hirota eq.:

(dH)
$$e^{D(z_1) D(z_2)\mathcal{F}} = -\frac{\partial_1 (D(z_1) - D(z_2))\mathcal{F}}{z_1 - z_2},$$

which $\mathcal{F}(t)$ should satisfy. (Notations: $D(z) := \sum \frac{z^{-n}}{n} \frac{\partial}{\partial t_n}$.)

Remark: τ of KP (with \hbar) = exp $(\hbar^{-2}\mathcal{F} + O(\hbar^{-1}))$.

 $(\exists similar theorem for dToda.)$

$\S 6$ Dispersionless KP and Löwner equation

Unexpected relation of the (chordal) Löwner equation and the dispersionless KP hierarchy was found by

- Gibbons-Tsarev (1999): for t_1 and t_2 .
- Yu-Gibbons (2000): in general (direct computation).
- Mañas-Martínez Alonso-Medina (2002): proof by "S function" (≒ log (solution of the auxiliary linear problem of KP))).
- T.-Teo-Zabrodin (2006): proof by dHirota eq.

(Radial (i.e., original) Löwner equation corresponds to the dispersionless Toda.)

Chordal Löwner equation:

 $H = \{ \operatorname{Im} z > 0 \}: \text{ the upper half plane.}$

 $K_{\lambda} \ (\lambda \in [0, a])$: growing hull of H, $K_0 = \emptyset$. $g(\lambda; z) : H \smallsetminus K_{\lambda} \xrightarrow{\sim} H$: conformal mapping normalised as

$$g(\lambda; z) = z + a_1(\lambda)z^{-1} + O(z^{-2}) \quad (z \to \infty), \qquad g(0; z) = z.$$

 $\Longrightarrow \exists U(\lambda) \text{ s.t.}$

$$\frac{\partial g}{\partial \lambda}(\lambda;z) = \frac{1}{g(\lambda;z) - U(\lambda)} \frac{da_1}{d\lambda} : \text{ Chordal Löwner equation.}$$

One variable reduction of dKP

 $\frac{\text{Theorem}}{\mathcal{L}(t;w) \text{ is a solution of dKP such that:}}$ $\exists \text{ functions } \lambda(t) \& f(\lambda, w) \colon \mathcal{L}(t;w) = f(\lambda(t), w).$ \implies (i) $f(\lambda, w) \text{ is the inverse function of a solution } g(\lambda, z)$ of the chordal Löwner eq. $(f(\lambda, g(\lambda, z)) = z, g(\lambda, f(\lambda, w)) = w.)$ (ii) $\lambda(t)$ satisfies $\frac{\partial \lambda}{\partial t_n} = \frac{\partial \Phi_n}{\partial w}(\lambda; U(\lambda))\frac{\partial \lambda}{\partial t_1}$ (n = 1, 2, ...)

Here, $\Phi_n(\lambda; w) = (f(\lambda, w)^n)_{\geq 0}$: Faber polynomial of g. (Polynomial part of $f(\lambda, w)^n$ w.r.t. w.)

Conversely:

<u>Theorem</u>

$$\begin{split} g(\lambda, z) &: \text{ solution of chordal Löwner equation.} \\ f(\lambda, w) &= w + O(w^{-1}) \text{: inverse function of } g, \\ \text{i.e., } f(\lambda, g(\lambda, z)) &= z, \quad g(\lambda, f(\lambda, w)) = w. \\ \lambda(t) \text{: solution of } \frac{\partial \lambda}{\partial t_n} &= \frac{\partial \Phi_n}{\partial w} (\lambda; U(\lambda)) \frac{\partial \lambda}{\partial t_1} \quad (n = 1, 2, \dots) \\ & \Longrightarrow \mathcal{L}(t, w) := f(\lambda(t), w) \text{ is a solution of } d\mathsf{KP}. \end{split}$$

Remark: The equation for $\lambda(t)$ is solved implicitly by the relation

$$t_1 + \sum_{n=2}^{\infty} t_n \frac{\partial \Phi_n}{\partial w}(\lambda; U(\lambda)) = R(\lambda).$$

 $R(\lambda)$: arbitrary generic function. (Tsarev's generalised hodograph method.)

$\S{7}$ Other examples

• mKP hierarchy \longleftrightarrow chordal Löwner-like equation

(Mañas-Martínez Alonso-Medina)

- Toda hierarchy \leftrightarrow radial Löwner equation (T.-Teo-Zabrodin, ...)
- BKP hierarchy \leftrightarrow quadrant Löwner equation (T.)
- DKP hierarchy ↔ annulus Löwner (Goluzin-Komatu) equation (Akhmedova-Zabrodin)

dBKP hierarchy: dKP + constraint: $\mathcal{L}(w) = -\mathcal{L}(-w)$. Quadrant Löwner equation:

$$\frac{\partial g}{\partial \lambda} = \frac{g}{V^2 - g^2} \frac{du}{d\lambda}.$$

Figure 1: Conformal mapping from a slit domain to the quadrant.

QUESTION

WHY do Löwner type equations give solutions of dispersionless integrable hierarchies?

Thank you for your attention.

<u>References</u> (mainly those cited in the talk)

On dispersionless integrable hierarchies and Löwner equations:

Gibbons J. and Tsarev S. P.: Phys. Lett. **A211** (1996), 19–24; **A258** (1999), 263–271.

Yu, L. and Gibbons J.: Inverse Problems 16 (2000), 605 618.

Mañas M., Martínez Alonso L. and Medina E.: J. Phys. A35 (2002), 401–417.

T. T., Teo L.-P. and Zabrodin A.: J. Phys. A: Math. Gen. **39** (2006), 11479–11501.

T. T.: SIGMA 10 (2014), 023, 13 pages.

Akhmedova V. and Zabrodin A.: arXiv:1404.5135

On dispersionless integrable hierarchies:

Takasaki K. and T. T.: Rev. Math. Phys. 7 (1995), 743–808.

T. T.: Lectures on Dispersionless Integrable Hierarchies, Rikkyo Research Center for Math. Phys. Lec. Notes **2**, http://id.nii.ac.jp/1062/00009024/