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§0. Introduction

• Integrable hierarchies = ’solvable’ systems with infinitely many

variables (e.g., t = (t1, t2, t3, . . . )).

• Dispersionless integrable hierarchies = quasi-classical limits of

certain integrable hierarchies.

• One-variable reduction: solutions depend on ∞-many variables

only through one function, e.g., λ(t).

Today’s topic

one-variable reduction of the dispersionless KP

(resp. Toda, BKP, DKP) hierarchy

⇕
the chordal (resp. radial, quadrant, annulus) Löwner equation.
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Plan of the talk:

1. Brief introduction to integrable systems.

2. KP hierarchy and Toda lattice hierarchy.

3. Dispersionless hierarchies.

4. Dispersionless Hirota equations.

5. dKP hierarchy and chordal Löwner equation.

6. Other examples.

Disclaimer: In this talk everything is quite “algebraic”:

• “functions” = formal power series

• “operators” = elements of non-commutative rings

Only algebraic structure is studied.

(& “genericity conditions” often omitted, ...)
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§1. What are “integrable systems”?

For systems with finite degrees of freedom,

∃ well established/defined geometric criteria of integrability.

• Frobenius integrability condition

• Liouville integrability condition (for Hamiltonian systems)

= “existence of sufficiently many conserved quantities”

Examples: Kepler motion, Tops (Euler, Lagrange, Kowalevski)

How about “integrable systems” with infinite degrees of freedom?
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Modern theory of integrable systems began with the discovery of

remarkable solutions of non-linear partial differential equations =

“SOLITONS” in 1960’s.

Soliton = particle-like stable solitary wave

Examples of soliton equations:

• KdV equation (1895): u = u(x, t), ut − 3uux − 1
4
uxxx = 0.

• KP equation (1970): u = u(x, y, t),
3
4
uyy − (ut − 3uux − 1

4
uxxx)x = 0.

• Sine-Gordon equation : u = u(x, t), utt − uxx − sin u = 0.

• Toda lattice (1967): un = un(t), un,tt = eun−1−un − eun−un+1 .
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• Surprisingly, such soliton equations are solvable in spite of its

nonlinearity!

– inverse scattering method, Lax pairs

– algebro-geometric solutions

– Hirota’s bilinear method

=⇒ various generalisation

• Why are they solvable? =⇒ discovery of

– infinitely many conserved quantities/ symmetries

– moduli space of solutions (e.g., ∞-dimensional Grassmann

manifold for KP hierarchy)

=⇒ relation to algebra (e.g., representation theory of

∞-dimensional Lie algebras).

Let us examine the KP and the Toda lattice hierarchies as examples.
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§2 KP hierarchy and Toda lattice hierarchy

KP hierarchy: integrable nonlinear system for ui(t) (i = 2, 3, . . . )

w.r.t. t = (t1, t2, t3, . . . ). (x = t1, ∂ = ∂/∂x.)

The Lax operator : L = ∂ + u2(t)∂
−1 + u3(t)∂

−2 + · · · .
Notation: symbols f(x)∂m for m ∈ Z span an algebra:

(
f(x)∂m

)(
g(x)∂n

)
=

∞∑
r=0

(
m

r

)
fg(r)∂m+n−r.

((
m
r

)
= m(m−1)···(m−r+1)

r!

)

KP hierarchy: (Lax representation)

(KP)
∂L

∂tn
= [Bn, L] (n = 1, 2, . . . ;Bn = (Ln)≥0).

Notation: P =
∑

n∈Z an∂
n → P≥0 :=

∑
n≥0 an∂

n.
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This includes the KP equation for u = u2:

3
4
ut2t2 −

(
ut3 − 3uux − 1

4
uxxx

)
x
= 0

∵) First two equations
∂L

∂t2
= [B2, L] and

∂L

∂t3
= [B3, L] are expanded as

∂u2

∂t2
∂−1 +

∂u3

∂t2
∂−2 + · · · = (u′′

2 + 2u′
3)∂

−1 + (u′′
3 + 2u′

4 + 2u2u
′
2)∂

−2 + · · · .

∂u2

∂t3
∂−1 +

∂u3

∂t3
∂−2 + · · · = (3u′′

3 + 3u′
4 + 6u2u

′
2 + u′′′

2 )∂−1 + · · · .

( (·)′ = ∂(·)/∂x.) Comparing the coefficients of ∂−1 and ∂−2 we have

∂u2

∂t2
= u′′

2 + 2u′
3,

∂u3

∂t2
= u′′

3 + 2u′
4 + 2u2u

′
2,

∂u2

∂t3
= 3u′′

3 + 3u′
4 + 6u2u

′
2 + u′′′

2 ,

Eliminating u3 and u4 we obtain the KP equation.
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• KP hierarchy

= set of compatibility conditions for the linear problem for

Ψ = Ψ(t; z): LΨ = zΨ,
∂Ψ

∂tn
= BnΨ. (z: spectral parameter)

• L satisfies (KP) ⇔ ∃ τ(t) (tau function) such that

Ψ(t; z) =
τ(t− [z−1])

τ(t)
e
∑

tnzn ,

(t = (tn)n=1,2,..., t− [z−1] =
(
tn − z−n

n

)
n=1,2,...

.)

and τ(t) satisfies a series of bilinear differential equations

(the Hirota equations).
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• Solutions of the KP hierarchy are parametrised by ∞-dimensional

Grassmann manifold (the Sato Grassmann manifold).

• Hirota equations = defining equations of the Grassmann manifold

(Plücker relations)

• ∞-dimensional symmetry:

GL(∞) acts on the Sato Grassmann manifold = GL(∞)/P∞/2.(
cf. finite dimensional Grassmann manifold = GL(N)/P ,

P =





∗ · · · ∗
.
.
.

. . .
.
.
. ∗

∗ · · · ∗

∗ · · · ∗

0

.

.

.
. . .

.

.

.

∗ · · · ∗




.
)
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Variants:

• (KP) + constraint L2 = ∂2 + 2u

=⇒ KdV hierarchy, which contains the KdV equation for u.

This has the symmetry of sl(2,C[t])⊕ (central extension), i.e.,

A
(1)
1 -type affine Lie algebra.

• (KP) + constraint L∗ = −∂L∂−1

(Notation: (a(x)∂n)∗ := (−∂)na(x) is the formal adjoint operator.)

=⇒ BKP hierarchy, which has the symmetry of so(2∞+ 1)

(B∞-type).

• There are CKP and DKP hierarchies corresponding to C∞ and D∞

type symmmetries, but the definitions are involved.

(Usually defined by the Hirota bilinear equations.)

11



Toda lattice hierarchy: ϕ, un, ūn: unknown functions of s, t = (tn)n∈Z,n̸=0.

L = eϕe∂s + u1 + u2e
−∂s + u3e

−2∂s + · · · ,

L̄−1 = eϕe−∂s + ū1 + ū2e
∂s + ū3e

2∂s + · · · ,

Bn =

(Ln)>0 +
1
2(L

n)0, (n > 0),

(L̄−n)<0 +
1
2(L̄

−n)0, (n < 0).

Notation:

• en∂sf(s) = f(s+ n): difference operator.

• A =
∑

n∈Z ane
n∂s → AS =

∑
n∈S ane

n∂s for S = “> 0”, “< 0” and “0”.

Toda lattice hierarchy: (Lax representation)

(Toda)
∂L

∂tn
= [Bn, L],

∂L̄

∂tn
= [Bn, L̄], (n ∈ Z, n ̸= 0).

12



• Parametrisations of solutions, τ function etc. are known.

• n = ±1 =⇒ the 2d Toda equation:

ϕt1t−1(s) = eϕ(s−1)−ϕ(s) − eϕ(s)−ϕ(s+1).

• 2d Toda eq. + constraint ϕ(s+ 2) = ϕ(s)

(+ change of variables) =⇒ Sine-Gordon eq.

• (Toda) + constraint: L = L̄−1

=⇒ 1d Toda hierarchy (which contains the Toda lattice for ϕ).

13



§4 Dispersionless hierarchies

Replace

• ∂, e∂s → commutative symbols.

• commutator [, ] → Poisson bracket {, }.

=⇒ dispersionless KP/Toda lattice hierarchies.

dispersionless KP hierarchy: ∂n → wn, {w, x} = 1.

L = w + u2(t)w
−1 + u3(t)w

−2 + · · · , Bn = (Ln)≥0.

(P =
∑

n∈Z anw
n → P≥0 :=

∑
n≥0 anw

n.)

dKP hierarchy:
∂L
∂tn

= {Bn,L} (n = 1, 2, . . . ).
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dispersionless Toda lattice hierarchy: en∂s → wn, {w, s} = w.

L = eϕw + u1 + u2w
−1 + u3w

−2 + · · · ,

L̃−1 = eϕw−1 + ū1 + ū2w + ū3w
2 + · · · ,

Bn =

(Ln)>0 +
1
2(L

n)0, (n > 0),

(L̃−n)<0 +
1
2(L̃

−n)0, (n < 0).

(A =
∑

n∈Z anw
n → AS :=

∑
n∈S anw

n for S = “> 0”, “< 0” and “0”. )

dToda hierarchy:
∂L
∂tn

= {Bn,L},
∂L̃
∂tn

= {Bn, L̃}, (n ∈ Z, n ̸= 0).

For dKP/dToda hierarchies, ∞-dimensional symmetries (w∞-algebra),

parametrisation of solutions (←→ canonical transformations) are known.

([Takasaki-T.] 1991–1995)
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§5 Dispersionless Hirota equations

(Maybe you feel flavour of complex analysis...)

First obtained in [Takasaki-T. (1995)] as a limit of

the differential Fay identity ( ⊂ Hirota eq.) for KP.

Teo’s formulation (2002)

L(t;w) = w + u1(t)w
−1 + u2(t)w

−2 + · · · .
k(t; z): inverse fuction of L(t;w) with respect to w:

L(t; k(t; z)) = z, k(t;L(t;w)) = w.

Grunsky coefficients bmn of k(t; z) (... for the Bieberbach conjecture):

(dH1) log
k(t; z1)− k(t; z2)

z1 − z2
= −

∞∑
m,n=1

bmn(t)z
−m
1 z−n

2 .
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In other words,

Ln +
∞∑

m=1

nbnm(t)L−m = (polynomial in w) = (Ln)≥0.

In particular

(dH2) k(t; z) = z +

∞∑
m=1

b1,mz−m.

Theorem

L(t;w): solution of dKP

⇐⇒ There exists F(t) such that
∂2F

∂tm∂tn
= −mnbmn(t).
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(dH1&2) rewritten in terms of F(t) ⇒
dispersionless Hirota eq.:

(dH) eD(z1)D(z2)F = −
∂1
(
D(z1)−D(z2)

)
F

z1 − z2
,

which F(t) should satisfy. (Notations: D(z) :=
∑ z−n

n

∂

∂tn
.)

Remark: τ of KP (with ~) = exp
(
~−2F +O(~−1)

)
.

(∃ similar theorem for dToda.)
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§6 Dispersionless KP and Löwner equation

Unexpected relation of the (chordal) Löwner equation and the

dispersionless KP hierarchy was found by

• Gibbons-Tsarev (1999): for t1 and t2.

• Yu-Gibbons (2000): in general (direct computation).

• Mañas-Mart́ınez Alonso-Medina (2002): proof by “S function”

(; log (solution of the auxiliary linear problem of KP))).

• T.-Teo-Zabrodin (2006): proof by dHirota eq.

(Radial (i.e., original) Löwner equation corresponds to the dispersionless Toda.)
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Chordal Löwner equation:

H = {Im z > 0}: the upper half plane.

∪

Kλ (λ ∈ [0, a]): growing hull of H, K0 = ∅.

g(λ; z) : H rKλ
∼−→ H: conformal mapping normalised as

g(λ; z) = z + a1(λ)z
−1 +O(z−2) (z →∞), g(0; z) = z.

=⇒ ∃ U(λ) s.t.

∂g

∂λ
(λ; z) =

1

g(λ; z)− U(λ)

da1
dλ

: Chordal Löwner equation.
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One variable reduction of dKP

Theorem

L(t;w) is a solution of dKP such that:

∃ functions λ(t) & f(λ,w): L(t;w) = f(λ(t), w).

=⇒
(i) f(λ,w) is the inverse function of a solution g(λ, z)

of the chordal Löwner eq. (f(λ, g(λ, z)) = z, g(λ, f(λ,w)) = w.)

(ii) λ(t) satisfies
∂λ

∂tn
=

∂Φn

∂w
(λ;U(λ))

∂λ

∂t1
(n = 1, 2, . . . )

Here, Φn(λ;w) = (f(λ,w)n)≥0 : Faber polynomial of g.

(Polynomial part of f(λ,w)n w.r.t. w.)
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Conversely:

Theorem

g(λ, z): solution of chordal Löwner equation.

f(λ,w) = w +O(w−1): inverse function of g,

i.e., f(λ, g(λ, z)) = z, g(λ, f(λ,w)) = w.

λ(t): solution of
∂λ

∂tn
=

∂Φn

∂w
(λ;U(λ))

∂λ

∂t1
(n = 1, 2, . . . )

=⇒ L(t, w) := f(λ(t), w) is a solution of dKP.

Remark: The equation for λ(t) is solved implicitly by the relation

t1 +
∞∑

n=2

tn
∂Φn

∂w
(λ;U(λ)) = R(λ).

R(λ): arbitrary generic function. (Tsarev’s generalised hodograph method.)
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§7 Other examples

• mKP hierarchy ←→ chordal Löwner-like equation

(Mañas-Mart́ınez Alonso-Medina)

• Toda hierarchy ←→ radial Löwner equation (T.-Teo-Zabrodin, ...)

• BKP hierarchy ←→ quadrant Löwner equation (T.)

• DKP hierarchy ←→ annulus Löwner (Goluzin-Komatu) equation

(Akhmedova-Zabrodin)
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dBKP hierarchy: dKP + constraint: L(w) = −L(−w).

Quadrant Löwner equation:

∂g

∂λ
=

g

V 2 − g2
du

dλ
.

g(z;λ) = w

w =
√

w̃ − 2u(λ)

V (λ)

U(λ)

z̃ = z2

g̃(z̃;λ) = w̃

z

w̃z̃

w

Figure 1: Conformal mapping from a slit domain to the quadrant.
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QUESTION

WHY do Löwner type equations give

solutions of dispersionless integrable hierarchies?

Thank you for your attention.

25



References (mainly those cited in the talk)

On dispersionless integrable hierarchies and Löwner equations:
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