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Introduction(1)
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Introduction(2)

X

@ curve in D — curve in H
@ curve — dynamics of domain
@ Represent by Loewner equation
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Loewner equation

¥ : [0, 00] — C : a simple curve, y(0) = 0, y(c0) = o0,79(0, ) C H,
gt : H\ [0, ] - H : conformal map, |g:(z) —z1 > 0 (z — ).
If v is parametrized by half plane capacity ( lim z(g:(z) — z) = 2t),
Z—00
g; satisfies the following differential equation
Loewner equation
0 2
— z = =
TP T O M

where U(t) := g:(y(t)) and U(t) is a R-valued continuous function.

We call U(t) the driving function of .

g
a "

0 U(t)

Rem. We can consider that a curve vy is described by the driving
finction U(t).
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Candidate for scaling limits

We consider a candidate for scaling limits of the driving function of
discrete random curves.

Let y be the scaling limit of some discrete random curve vy,
connecting two distinct boundary points a and b of D.

Since there are several conjectures in critical systems,

we assume that y satisfies the following properties.

@ Domain Markov property
@ Conformal invarinance

Let ¢ : D — H : conformal map, ¢(a) = 0, ¢(b) = co. Then, the
driving function U(t) of ¢(y) satisfies the following properties.

@ Stationary increment
@ Independent increment
@ Scale invariance
Therefore, U(t) must be a Brownian motion +/kB; of variance «.
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Schramm-Loewner evolution

We construct a candidate for scaling limits.
Let k > 0, B;: 1-dim standard Brownian motion with By = 0.

chordal SLE,

A chordal Schramm-Loewner evolution with parameter x > 0
(chordal SLE,) is the random family of conformal map g; obtained
from the chordal Loewner equation driven by /kB;

0 2
Egt(z) = m 9(2) = z,

The following proposition is very important and basic in SLE theory.

Propositon (existence of chordal SLE, curve)

With probability 1, we can define the non-self crossing random
curve y which generates SLE,.
We call y a chordal SLE, curve in H from 0 to co.




SLE in simply connected domains

We define SLE in any simply connected domain.

v :achordal SLE, curve in H from 0 to oo

D ¢ C : simply connected domain, a € dD, b € 4D,

¢ : D — H : conformal map, ¢(a) = 0,¢(b) = co.

Although ¢ is not unique, the distribution of ¢~'(y) is independent
of the choice of the map up to time change.

We consider SLE, curves in D as unparametrized curves.

chordal SLE, curve in simply connected domains

We call ~'(y) a chordal SLE, curve in D from a to b.

metic on the space of unparametrized curves

(1, 72) = inf S d.(y1(t), y2 0 a(t))|-

where d, O C is the spherical metric on € and the infimum is taken
over all reparametrization a.



Domain Markov and conformal inariance

We consider properties that SLE curves are expected to have.
Let up(a, b): the law of a chordal SLE, curve in D from a to b,
The following two properties immediately follow from the definition
of SLE.

@ domain Markov property

pp(a, b)( - y[0,1]) = ppy,o.q(¥(1), b)

@ conformal invariance
f: D — f(D) : conformal map.

foup(a,b) = uspy(f(a), f(b))

These properties are important to characterize SLE curves.
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The scaling limit of descrete models

@ k=2
loop-erased random walk (LERW)
8 .
@ x = —(conjecture)
self-avoiding walk

k=3
critical Ising model

k=4
harmonic explorer, Gaussian free field
16
@ K= ?
FK Ising model (FK percolation, g = 2)
@ k=6

critical percolation

k=28
uniform spanning tree Peano curve

9/27



chordal and radial

chordal radial
@ ( €>D
D

v v

ot
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I will return to talk about LERW.

@ Model
RW LERW

@ Loop erasure

B

S
-
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Known results (radial)

We will introduce known results for radial.

Lawler,Schramm,Werner (2004)
G: square lattice ( triangular lattice ),
LERW starting from an inner point = radial SLE,  w.r.t. dyy

In above paper, they construct the basic idea of proof of
convergence to a SLE curve. So, it is the origin of the research on
SLE and scaling limit.

Yadin and Yehudayoff extend to more general graphs.

Yadin, Yehudayoff (2011)

G : planar irreducible graph + invariance principle,
LERW starting from an inner point = radial SLE>  w.r.t. dyy
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Known results (chordal)

We will introduce known results for chordal.

Zhan (2008)

G: square lattice ,
LERW connecting two boundary points = chordal SLE,  w.r.t. dyy

| extend Zhan’s result in a similar setteing to Yadin and Yehudayoff.
In the rest of this talk, | will talk about my main result precisely.
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Planar-irreducible graph

G = (V, E): a directed weighted graph,

0 € V c C: a set of verticies, E: V x V — [0,0): a set of edges.
We define a planar-irreducible graph G that satisfies the following
conditions .

@ Gis a planar graph.
(i.e. every two edges do not intersect except for vertices.)

@ For any compactset K c C,#{ve V:ve K} < .
@ Foranyue V, 3 v E(u,w) < 0.

E(u,v)
° Letp(u,v) = —————.
( ) ZWGV E(U, W)
The Markov chain S(-) on V with the transition probability
p(u, v) is irreducible.

We call this Markov chain S(-) a natural random walk on G.
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For w = (wo, w1, ..., wn), let sop := max{k > 0 : wy = wk},
Sm:=max{k >0 : ws, ;+1 = wk}, [ :=min{m > 0 : ws, = wp}.

loop erasure

L{w] := (wsy, Wsys - - - » Ws))-

time-revarsal

w™ = (Wn, Wn-1,...,Wp).

o [VEIR1]

Suppose that there exists an invariant measure n for a natural
random walk S(-) on G such that 0 < 7(v) < co for any v € V.
Then, we can define the dual walk S*(-) with the following
transition probability p*.

D (V) = %p(v, ).
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Invariance principle

For 6 > 0, the graph Gs = ( Vs, Es) defined by
Vs ={ou:ueV}, Es={(6u,6v):E(u,v)>0}.

Let S¥(-) be a natural random walk on Gs starting at x € V;.

In this talk, invariance principle mean that the following.

invariance principle

A natural random walk trajectry weakly converges to a 2-dim
Brownian motion trajectry locally uniformly for starting points.
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D ¢ C : a bounded simply connected domain, a € D, b € dD.
0D is locally connected and locally analytic at a and b.

G = (V, E) : a planar irreducible graph,

I’g”b : a natural random walk on G; started at a and stopped on
exiting D and conditioned to hit 0D at b,

y2P - the loop erasure of [%° (LERW),

n?®P : a chordal SLE; curve in D from a to b.

Theorem (S,2014)

Suppose that S} and (S*)7 satisfy invariance principle.
Then,

y?’b = n*P (6 5 0) wrt dy
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Outline of proof

step 1 Estimate for driving function U(t)

@ In order to estimate the driving function of
LERW, we must find a "nice” martingale
obsrvable for LERW which converges to some
conformal invariant.

@ By using martingale observable,
we estimate expectation and variance of
increment of driving function U(t).

step 2 Convergence w.r.t. driving function U(t)
step 3 Convergence w.r.t. dyy
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Let (¥2%)" =y = (Yo, ¥1s-- -+ %),

¥10,/] is a linear interpolation of (yo, ¥1,...,%;),

¢ : D — H be a conformal map with ¢(a) = 0, ¢(b) = o,
U(t) : the driving function of ¢(y),

g: : the Loewner chain driven by U(t), t; = hcap(¢(y|o,])),
U= U(t),¢; == g1 © ¢, Dj := D\ ¥[0, ]].

b
LS
4,
D, \\“‘; ‘ig
o

U;
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Martingale observable

ForVe >0, m=m(e) :==inf{j>1:t> € or|U— Up| > €}
we VsnD, A=¢"([-1,1]),
H®)(x,-): the hitting probability of RW starting at x in D;.

[
~

martingale observable for LERW

Let ©)
~ H (wy)

M; = H (b; A).

H (b y)
Then, M; is a martingale and

2
M; = —=Im

. (m)+0(63), 0<j<m
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Because M; is a martingale and m is a bounded stopping time,
E[My, - My] =0
By substituting

2
M; = ——Im

1 3 _
(g + o) osizm

we get

L e v Bl ey | L GO N

We consider Taylor expantion of the left hand side of this equation.
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Let f(u,v) = 1/(u—v). Using

tm = O(€®), Un— Uy = O(e),

dm(w) — p(w) = “tn + O(€°),

2
¢(w) - Uo
we Taylor-expand f(¢m(w), Un) — f(¢(w), Up) with respect to

dm(w) — ¢(w) and Up, — Up, up to O(€3). Observing imaginary part
of this Taylor expansion, we get by (1)

E[Up — Up] + Irn( E[(Un — Up)? - 2] = O(€Y).

1 1
ArrEnd comnd
By two different choices of w, we get the following estimates
E[Un - Up] = O(€),
E[(Un — Up)? - 2tm] = O(€°).
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Now, we can esrimate for expectation and variance of increment of
the driving function U(t) at time 0. Because LERW has the domain
Markov property, we may consider at the time 0 in another domain
D\ y|0, t] instead of at time tin D.

D b D\710.4]

o
o
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Because we shoud estimate uniformly, we introduce a domain
class D.

D : a simply connected domain,dD is locally connected,

a, b : two distinct points on 9D,

¢ : D — H : a conformal map with ¢(a) = 0, ¢(b) = co.

Let p=¢7'(i), radp(D) :=inf{lz - p| : z ¢ D}.
D:={zeC:|zl <1}

¥ : D - D : a conformal map with y(b) = 1,¥(p) = 0,y(a) = 1.

class D

Let D = D(r, R, n) be the collection of all quadruplets (D, a, b, p)
such that

@ radp(D) > r
@ DcRD
@ ¢! has analytic extensionin {z€ C : [z - 1| < 1}
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key Lemma

Forany r>0,R >0, > 0.

there exists a constant C > 0 and a number ¢ > 0 such that for
each positive € < ¢, there exists 6y > 0 such that if

(D,a,b,p) € D(r,R,n) and 0 < § < &,

then we get the following estimates

|E[Un — Ug]l < CE°,

and
IE[(Un — Up)? - 2ty]l < CE°.
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Step2 and Step3

Step 2 Convergence w.r.t. driving function U(t)
@ By Key Lemma and Skorokhod embedding
theorem, we can prove that the driving function
U(t) weakly converges to V2B;
Step 3 Convergence w.r.t. dy
@ We improve to convergence w.r.t. the metric dy
by using Sun and Sheffield’s sufficient condition.
Then, we need convergnce of y and y~ w.r.t.
driving function.
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