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Loewner equation

γ : [0,∞]→ C : a simple curve, γ(0) = 0, γ(∞) = ∞, γ(0,∞) ⊂ H,
gt : H \ γ[0, t]→ H : conformal map, |gt(z) − z| → 0 (z → ∞).
If γ is parametrized by half plane capacity ( lim

z→∞
z(gt(z) − z) = 2t),

gt satisfies the following differential equation
.
Loewner equation
..

.

∂

∂t
gt(z) =

2
gt(z) − U(t)

, g0(z) = z,

where U(t) := gt(γ(t)) and U(t) is a R-valued continuous function.

We call U(t) the driving function of γ.

0 U(t)

(t)γ
g t

Rem. We can consider that a curve γ is described by the driving
finction U(t).
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Candidate for scaling limits

We consider a candidate for scaling limits of the driving function of
discrete random curves.
Let γ be the scaling limit of some discrete random curve γδ
connecting two distinct boundary points a and b of D.
Since there are several conjectures in critical systems,
we assume that γ satisfies the following properties.

Domain Markov property

Conformal invarinance

Let ϕ : D → H : conformal map, ϕ(a) = 0, ϕ(b) = ∞. Then, the
driving function U(t) of ϕ(γ) satisfies the following properties.

Stationary increment

Independent increment

Scale invariance

Therefore, U(t) must be a Brownian motion
√
κBt of variance κ.
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Schramm-Loewner evolution

We construct a candidate for scaling limits.
Let κ > 0, Bt : 1-dim standard Brownian motion with B0 = 0.
.
chordal SLEκ..

.

A chordal Schramm-Loewner evolution with parameter κ > 0
(chordal SLEκ) is the random family of conformal map gt obtained
from the chordal Loewner equation driven by

√
κBt

∂

∂t
gt(z) =

2
gt(z) −

√
κBt

, g0(z) = z,

The following proposition is very important and basic in SLE theory.
.
Propositon (existence of chordal SLEκ curve)
..

.

With probability 1, we can define the non-self crossing random
curve γ which generates SLEκ.
We call γ a chordal SLEκ curve in H from 0 to ∞.
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SLE in simply connected domains

We define SLE in any simply connected domain.
γ : a chordal SLEκ curve in H from 0 to ∞
D  C : simply connected domain, a ∈ ∂D, b ∈ ∂D,
ϕ : D → H : conformal map, ϕ(a) = 0, ϕ(b) = ∞.
Although ϕ is not unique, the distribution of ϕ−1(γ) is independent
of the choice of the map up to time change.
We consider SLEκ curves in D as unparametrized curves.
.
chordal SLEκ curve in simply connected domains
..
.We call ϕ−1(γ) a chordal SLEκ curve in D from a to b.

.
metic on the space of unparametrized curves
..

.

dU(γ1, γ2) := inf
α

[
sup

0≤t≤1
d∗(γ1(t), γ2 ◦ α(t))

]
.

where d∗は Ĉ is the spherical metric on Ĉ and the infimum is taken
over all reparametrization α.
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Domain Markov and conformal inariance

We consider properties that SLE curves are expected to have.
Let µD(a, b): the law of a chordal SLEκ curve in D from a to b,
The following two properties immediately follow from the definition
of SLE.

domain Markov property

µD(a, b)( · |γ[0, t]) = µD\γ[0,t](γ(t), b)

conformal invariance
f : D → f(D) : conformal map.

f ◦ µD(a, b) = µf(D)(f(a), f(b))

These properties are important to characterize SLE curves.
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The scaling limit of descrete models

κ = 2
loop-erased random walk (LERW)

κ =
8
3

(conjecture)

self-avoiding walk

κ = 3
critical Ising model

κ = 4
harmonic explorer, Gaussian free field

κ =
16
3

FK Ising model (FK percolation, q = 2)

κ = 6
critical percolation

κ = 8
uniform spanning tree Peano curve
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I will return to talk about LERW.

Model
RW LERW

Loop erasure
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Known results (radial)

We will introduce known results for radial.
.
Lawler,Schramm,Werner (2004)
..

.

G: square lattice ( triangular lattice ),
LERW starting from an inner point⇒ radial SLE2 w.r.t. dU

In above paper, they construct the basic idea of proof of
convergence to a SLE curve. So, it is the origin of the research on
SLE and scaling limit.

Yadin and Yehudayoff extend to more general graphs.
.
Yadin, Yehudayoff (2011)
..

.

G : planar irreducible graph + invariance principle,
LERW starting from an inner point⇒ radial SLE2 w.r.t. dU
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Known results (chordal)

We will introduce known results for chordal.
.
Zhan (2008)
..

.

G: square lattice ,
LERW connecting two boundary points⇒ chordal SLE2 w.r.t. dU

I extend Zhan’s result in a similar setteing to Yadin and Yehudayoff.
In the rest of this talk, I will talk about my main result precisely.
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Planar-irreducible graph

G = (V ,E): a directed weighted graph,
0 ∈ V ⊂ C: a set of verticies, E : V × V → [0,∞): a set of edges.
We define a planar-irreducible graph G that satisfies the following
conditions .

G is a planar graph.
(i.e. every two edges do not intersect except for vertices.)

For any compact set K ⊂ C, ♯{v ∈ V : v ∈ K } < ∞.

For any u ∈ V ,
∑

w∈V E(u,w) < ∞.

Let p(u, v) :=
E(u, v)∑

w∈V E(u,w)
.

The Markov chain S(·) on V with the transition probability
p(u, v) is irreducible.

We call this Markov chain S(·) a natural random walk on G.
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Notation

For ω = (ω0, ω1, . . . , ωn), let s0 := max{k ≥ 0 : ω0 = ωk },
sm := max{k ≥ 0 : ωsm−1+1 = ωk }, l := min{m ≥ 0 : ωsm = ωn}.
.
loop erasure
..

. L [ω] := (ωs0 , ωs1 , . . . , ωsl ).

.
time-revarsal
..

. ω− := (ωn, ωn−1, . . . , ω0).

.
dual walk
..

.

Suppose that there exists an invariant measure π for a natural
random walk S(·) on G such that 0 < π(v) < ∞ for any v ∈ V .
Then, we can define the dual walk S∗(·) with the following
transition probability p∗.

p∗(u, v) :=
π(v)
π(u)

p(v , u).
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Invariance principle

For δ > 0, the graph Gδ = (Vδ,Eδ) defined by

Vδ = {δu : u ∈ V}, Eδ = {(δu, δv) : E(u, v) > 0}.

Let Sx
δ (·) be a natural random walk on Gδ starting at x ∈ Vδ.

In this talk, invariance principle mean that the following.
.
invariance principle
..

.

A natural random walk trajectry weakly converges to a 2-dim
Brownian motion trajectry locally uniformly for starting points.
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Main result

D ( C : a bounded simply connected domain, a ∈ ∂D, b ∈ ∂D.
∂D is locally connected and locally analytic at a and b.
G = (V ,E) : a planar irreducible graph,
Γa,b
δ : a natural random walk on Gδ started at a and stopped on

exiting D and conditioned to hit ∂D at b,
γa,b
δ : the loop erasure of Γa,b

δ (LERW),
ηa,b : a chordal SLE2 curve in D from a to b.
.
Theorem (S,2014)
..

.

Suppose that Sx
δ and (S∗)x

δ satisfy invariance principle.
Then,

γa,b
δ ⇒ ηa,b (δ→ 0) w.r.t dU
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Outline of proof

step 1 Estimate for driving function U(t)
In order to estimate the driving function of
LERW, we must find a ”nice” martingale
obsrvable for LERW which converges to some
conformal invariant.
By using martingale observable,
we estimate expectation and variance of
increment of driving function U(t).

step 2 Convergence w.r.t. driving function U(t)

step 3 Convergence w.r.t. dU
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Notation

Let (γb ,a
δ )− = γ = (γ0, γ1, . . . , γl),

γ[0, j] is a linear interpolation of (γ0, γ1, . . . , γj),
ϕ : D → H be a conformal map with ϕ(a) = 0, ϕ(b) = ∞,
U(t) : the driving function of ϕ(γ),
gt : the Loewner chain driven by U(t), tj = hcap(ϕ(γ[o, j])),
Uj := U(tj), ϕj := gtj ◦ ϕ,Dj := D \ γ[0, j].

a

b

U

U

0

j

φ

φj
g t j

γj

Dj
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Martingale observable

For ∀ϵ > 0, m = m(ϵ) := inf{ j ≥ 1 : tj ≥ ϵ2 or |Uj − U0| ≥ ϵ}.
w ∈ Vδ ∩ D, A = ϕ−1([−1, 1]),
H(δ)

j (x, ·): the hitting probability of RW starting at x in Dj .

.
martingale observable for LERW
..

.

Let

Mj :=
H(δ)

j (w, γj)

H(δ)
j (b , γj)

H(δ)
0 (b;A).

Then, Mj is a martingale and

Mj = −
2
π

Im
(

1
ϕj(w) − Uj

)
+ O(ϵ3), 0 ≤ j ≤ m
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Step1-1

Because Mj is a martingale and m is a bounded stopping time,

E[Mm −M0] = 0

By substituting

Mj = −
2
π

Im
(

1
ϕj(w) − Uj

)
+ O(ϵ3), 0 ≤ j ≤ m,

we get

E
[
Im

(
1

ϕm(w) − Um

)
− Im

(
1

ϕ(w) − U0

)]
= O(ϵ3). (1)

We consider Taylor expantion of the left hand side of this equation.
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Step1-2

Let f(u, v) = 1/(u − v). Using

tm = O(ϵ2), Um − U0 = O(ϵ),

ϕm(w) − ϕ(w) =
2

ϕ(w) − U0
· tm + O(ϵ3),

we Taylor-expand f(ϕm(w),Um) − f(ϕ(w),U0) with respect to
ϕm(w) − ϕ(w) and Um −U0, up to O(ϵ3). Observing imaginary part
of this Taylor expansion, we get by (1)

Im
(

1
(ϕ(w) − U0)2

)
E[Um −U0] + Im

(
1

(ϕ(w) − U0)3

)
E[(Um −U0)

2 − 2tm] = O(ϵ3).

By two different choices of w, we get the following estimates

E[Um − U0] = O(ϵ3),

E[(Um − U0)
2 − 2tm] = O(ϵ3).
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Step1-3

Now, we can esrimate for expectation and variance of increment of
the driving function U(t) at time 0. Because LERW has the domain
Markov property, we may consider at the time 0 in another domain
D \ γ[0, t ] instead of at time t in D.

b

a

D b

a

D\

(t)(t)

[0,t]

γ

γ

γ
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Step1-4

Because we shoud estimate uniformly, we introduce a domain
class D.
D : a simply connected domain,∂D is locally connected,
a, b : two distinct points on ∂D,
ϕ : D → H : a conformal map with ϕ(a) = 0, ϕ(b) = ∞.
Let p = ϕ−1(i) , radp(D) := inf{|z − p| : z < D}.
D := {z ∈ C : |z| < 1}.
ψ : D → D : a conformal map with ψ(b) = 1, ψ(p) = 0, ψ(a) = −1.
.
class D
..

.

Let D = D(r ,R , η) be the collection of all quadruplets (D, a, b , p)
such that

radp(D) ≥ r

D ⊂ RD

ψ−1 has analytic extension in {z ∈ C : |z − 1| < η}
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Step1-5

.
key Lemma
..

.

For any r > 0,R > 0, η > 0.
there exists a constant C > 0 and a number ϵ0 > 0 such that for
each positive ϵ < ϵ0, there exists δ0 > 0 such that if
(D, a, b , p) ∈ D(r ,R , η) and 0 < δ < δ0,
then we get the following estimates

|E[Um − U0]| ≤ Cϵ3,

and
|E[(Um − U0)

2 − 2tm]| ≤ Cϵ3.
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Step2 and Step3

Step 2 Convergence w.r.t. driving function U(t)
By Key Lemma and Skorokhod embedding
theorem, we can prove that the driving function
U(t) weakly converges to

√
2Bt

Step 3 Convergence w.r.t. dU
We improve to convergence w.r.t. the metric dU
by using Sun and Sheffield’s sufficient condition.
Then, we need convergnce of γ and γ− w.r.t.
driving function.
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