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Background Quasiconformal mappings

Quasiconformal mappings

Let k be a constant with 0 ≤ k < 1.
A homeomorphism f : Ω → Ω′ between plane domains is called a
k-quasiconformal (k-qc, for short) mapping if f is in the Sobolev
class W 1,2

loc (Ω) and satisfies the differential inequality
∣∣∂̄f

∣∣ ≤ k |∂f |
a.e. on Ω. Here,

∂ =
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)

and

∂̄ =
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)

for z = x+ iy.

In the literature, it is more often called K-qc with K =
1 + k

1− k
≥ 1.

Toshiyuki Sugawa (Tohoku Univ.) An application of the Loewner theory to trivial Beltrami coefficientsNovember 22, 2014 4 / 27



Background Löwner chain

Löwner chain

Let ft(z) = f(z, t), t ≥ 0, be a family of analytic functions on the
unit disk D = {z ∈ C : |z| < 1}. It is called a Löwner chain if

...1 f(0, t) = w0 is independent of t,

...2 a(t) = f ′
t(0) is (locally) absolutely continuous in t ≥ 0 and

a(t) → ∞ as t → +∞,
...3 ft : D → C is univalent and fs(D) ⊂ ft(D) whenever 0 ≤ s ≤ t.

Then f(z, t) is absolutely continous in t ≥ 0 for each z ∈ D and
satisfies the Löwner differential equation

ḟ(z, t) = zf ′(z, t)p(z, t), z ∈ D, a.e. t ≥ 0,

where

ḟ =
∂f

∂t
and f ′ =

∂f

∂z
,

p(z, t) = pt(z) is analytic for each t, measurable in t ≥ 0 for each
z ∈ D and satisfies Re pt(z) > 0 on |z| < 1 for a.e. t ≥ 0.
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Background Existence of Löwner chain

Existence of Löwner chain

Conversely, if a family of analytic functions pt(z) = p(z, t), t ≥ 0, on
D are given so that p(z, t) is measurable in t ≥ 0 and satisfies
Re pt > 0, the following theorem ensures existence of a corresponding
Löwner chain under a mild condition.
.
Theorem (Löwner, Pommerenke, Becker)
..

.

. ..

.

.

If p(z, t) is locally integrable in t and if

∫ ∞

0

Re p(0, t)dt = +∞,

then there exists a Löwner chain ft, t ≥ 0, such that

ḟ(z, t) = zf ′(z, t)p(z, t), z ∈ D, a.e. t ≥ 0.
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Background Becker’s theorem

Becker’s theorem

.
Theorem (Becker 1972)
..

.

. ..

.

.

Let 0 ≤ k < 1 be a constant. If pt satisfies
∣∣∣∣
1− pt(z)

1 + pt(z)

∣∣∣∣ ≤ k

for z ∈ D and a.e. t ≥ 0, then ft is continuous and injective on D for
each t ≥ 0 and f0 extends to a k-quasiconformal map of the complex
plane and its extension f̃0 is given by

f̃0(e
tζ) = f(ζ, t), |ζ| = 1, t ≥ 0.

In this case, Re p(0, t) ≥ 1−k
1+k > 0, which implies∫∞

0 Re p(0, t)dt = +∞.
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Background Betker’s theorem

Betker’s theorem

.
Theorem (Betker 1992)
..

.

. ..

.

.

Let f(z, t) be a Löwner chain with ḟ(z, t) = zf ′(z, t)p(z, t) and∫∞
0 Re p(0, t)dt = +∞. Suppose that there is a mesurable family of
analytic functions qt(z) = q(z, t) on D and a constant k ∈ [0, 1) such
that ∣∣∣∣∣

p(z, t)− q(z, t)

p(z, t) + q(z, t)

∣∣∣∣∣ ≤ k, z ∈ D, a.e. t ≥ 0.

Then f0(z) = f(z, 0) has a k-qc extension f̃0 : C → C.

We remark that Betker gave a construction of f̃0 in terms of the
inverse Löwner equation, which will be introduced later in this talk.
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Beltrami coefficients

Beltrami coefficients
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Beltrami coefficients A framework

A framework

D = {z ∈ C : |z| < 1} the unit disk

M(D) = {µ ∈ L∞(D) : ∥µ∥∞ < 1} the set of Beltrami coefficients
on D.
f = fµ : D → D quasiconformal (qc) automorphism of D with

∂̄f = µ∂f

a.e. on D, and with f(1) = 1, f(i) = i, f(−1) = −1. Note that a qc
automorphism of D extends to a homeomorphism of D. Recall that f
is called k-qc if ∥µ∥∞ ≤ k.
M0(D) = {µ ∈ M(D) : fµ = id on ∂D} the set of trivial Beltrami
coefficients
Teich = M(D)/M0(D) the universal Teichmüller space
(The set of normalized quasisymmetric self-homeomorphisms of
S1 = ∂D)
Here, µ1 ∼ µ2 if fµ1 = fµ2 on ∂D.
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Beltrami coefficients Facts about trivial Beltrami coefficients

Facts about trivial Beltrami coefficients

.
Theorem (Earle-Eells 1967)
..
.
. ..

.

.

M0(D) is a contractible C0 submanifold of M(D).

However, we do not know much about M0(D). For instance, we
cannot find any simple sufficient condition for µ ∈ M(D) to be trivial.
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Beltrami coefficients Infinitesimally trivial Beltrami differentials

Infinitesimally trivial Beltrami differentials

A tangent vector of M0(D) at 0 in the space M(D) ⊂ L∞(D) is
called an infinitesimally trivial Beltrami differential on D. The set of
those differentials will be denoted by N(D).

A(D) = {ϕ : holomorphic on D, ∥ϕ∥ =
∫∫

D |ϕ(z)|dxdy < ∞}
integrable holomorphic quadratic differentials on D
.
Teichmüller’s lemma
..
.
. ..

.

.

N(D) = {ν ∈ L∞(D) :
∫∫

D ν(z)ϕ(z)dxdy = 0 ∀ϕ ∈ A(D)}.
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Main result

Main result

Toshiyuki Sugawa (Tohoku Univ.) An application of the Loewner theory to trivial Beltrami coefficientsNovember 22, 2014 13 / 27



Main result Harmonic Hardy space h∞

Harmonic Hardy space h∞

T = {ζ ∈ C : |ζ| = 1} the unit circle
For φ ∈ L∞(T), let

w(z) = P [φ](z) =
1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2φ(e
iθ)dθ, z ∈ D.

Then w is a bounded harmonic function on D and

lim
r→1−

w(reiθ) = φ(eiθ) a.e. θ ∈ R.

Through this correspondence, the set h∞(D) of (complex valued)
bounded harmonic functions on D can be identified with L∞(T).
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Main result Hardy space H∞

Hardy space H∞

H∞(D) the set of bounded analytic functions on D

This is a closed subspace of h∞(D). The boundary values of H∞(D)
is thus a closed subspace of L∞(T), which will be denoted by
H∞(T). Also, we can describe it by

H∞(T) = {φ = φ1 + iφ2 ∈ L∞(T) : φ2 = H[φ1] + const.},

where H is the Hilbert transformation:

H[φ](eiθ) =
1

2π
p.v.

∫ 2π

0

φ(eit) cot

(
θ − t

2

)
dt.
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Main result Harmonic extention of a function in L∞(D)

Harmonic extention of a function in L∞(D)

Let µ ∈ L∞(D) with ∥µ∥∞ ≤ k < 1. We may assume that µ is Borel
measurable.

For a.e. t ∈ [0,+∞), ψt(ζ) = ζ−2µ(e−tζ) belongs to L∞(T) and
satisfies ∥ψt∥∞ ≤ k. We extend ψt to a harmonic function on D by
the Poisson integral:

ut(z) = P [ψt](z) =
1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2µ(e
−t+iθ)e−2iθdθ.

Then u(t, z) = ut(z) is measurable in t ≥ 0 and harmonic in z ∈ D.
Conversely, if u : [0,+∞)× D → Dk = {|z| ≤ k} satisfies these
conditions, then the radial limit ψt of ut(z) = u(t, z) defines a
function µ ∈ L∞(D) with ∥µ∥∞ ≤ k by µ(e−tζ) = ζ2ψt(ζ) for t ≥ 0
and ζ ∈ T.

Toshiyuki Sugawa (Tohoku Univ.) An application of the Loewner theory to trivial Beltrami coefficientsNovember 22, 2014 16 / 27



Main result Harmonic extention of a function in L∞(D)

Harmonic extention of a function in L∞(D)

Let µ ∈ L∞(D) with ∥µ∥∞ ≤ k < 1. We may assume that µ is Borel
measurable.
For a.e. t ∈ [0,+∞), ψt(ζ) = ζ−2µ(e−tζ) belongs to L∞(T) and
satisfies ∥ψt∥∞ ≤ k. We extend ψt to a harmonic function on D by
the Poisson integral:

ut(z) = P [ψt](z) =
1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2µ(e
−t+iθ)e−2iθdθ.

Then u(t, z) = ut(z) is measurable in t ≥ 0 and harmonic in z ∈ D.
Conversely, if u : [0,+∞)× D → Dk = {|z| ≤ k} satisfies these
conditions, then the radial limit ψt of ut(z) = u(t, z) defines a
function µ ∈ L∞(D) with ∥µ∥∞ ≤ k by µ(e−tζ) = ζ2ψt(ζ) for t ≥ 0
and ζ ∈ T.

Toshiyuki Sugawa (Tohoku Univ.) An application of the Loewner theory to trivial Beltrami coefficientsNovember 22, 2014 16 / 27



Main result Harmonic extention of a function in L∞(D)

Harmonic extention of a function in L∞(D)

Let µ ∈ L∞(D) with ∥µ∥∞ ≤ k < 1. We may assume that µ is Borel
measurable.
For a.e. t ∈ [0,+∞), ψt(ζ) = ζ−2µ(e−tζ) belongs to L∞(T) and
satisfies ∥ψt∥∞ ≤ k. We extend ψt to a harmonic function on D by
the Poisson integral:

ut(z) = P [ψt](z) =
1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2µ(e
−t+iθ)e−2iθdθ.

Then u(t, z) = ut(z) is measurable in t ≥ 0 and harmonic in z ∈ D.

Conversely, if u : [0,+∞)× D → Dk = {|z| ≤ k} satisfies these
conditions, then the radial limit ψt of ut(z) = u(t, z) defines a
function µ ∈ L∞(D) with ∥µ∥∞ ≤ k by µ(e−tζ) = ζ2ψt(ζ) for t ≥ 0
and ζ ∈ T.

Toshiyuki Sugawa (Tohoku Univ.) An application of the Loewner theory to trivial Beltrami coefficientsNovember 22, 2014 16 / 27



Main result Harmonic extention of a function in L∞(D)

Harmonic extention of a function in L∞(D)

Let µ ∈ L∞(D) with ∥µ∥∞ ≤ k < 1. We may assume that µ is Borel
measurable.
For a.e. t ∈ [0,+∞), ψt(ζ) = ζ−2µ(e−tζ) belongs to L∞(T) and
satisfies ∥ψt∥∞ ≤ k. We extend ψt to a harmonic function on D by
the Poisson integral:

ut(z) = P [ψt](z) =
1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2µ(e
−t+iθ)e−2iθdθ.
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Main result

If the function u is analytic, then we have a trivial Beltrami
coefficient. More precisely, we have:

.
Theorem
..

.

. ..

.

.

Let µ ∈ M(D) and set ψt(ζ) = ζ−2µ(e−tζ) for t ≥ 0 and ζ ∈ T. If
ψt ∈ H∞(T) for almost every t ≥ 0, then µ ∈ M0(D).

Remark 1: The above condition is linear in some sense. For instance,
cµ ∈ M0(D) for the above µ and any complex number c with
|c| < 1/∥µ∥∞.

Remark 2: By Teichmüller’s lemma, we see that µ ∈ N(D) for the
above µ.
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Main result Examples of trivial Beltrami coefficients

Examples of trivial Beltrami coefficients

Let N be a non-negative integer and aj(t), j = 0, 1, . . . , N, be
essentially bounded measurable functions in t ≥ 0 so that

µ(z) =
N∑

j=0

aj(− log |z|)
(

z

|z|

)j+2

satisifies ∥µ∥∞ < 1. Then µ ∈ M0(D).

Indeed,

ψt(ζ) = ζ−2µ(e−tζ) =
∑

aj(t)ζ
j

extends to the analytic function
∑

aj(t)zj. For instance, if

N∑

j=0

∥aj∥∞ < 1,

then µ of the above form is in M0(D).
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Main result A concrete example (picture)

A concrete example (picture)

Figure: Drawn by Mr. Shimauchi
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Proof of the main result Inverse Löwner chain

Inverse Löwner chain

Let ωt(z) = ω(z, t), t ≥ 0, be a family of analytic functions on the
unit disk D. It is called an inverse Löwner chain if

...1 ω(0, t) = w0 is independent of t,

...2 b(t) = ω′
t(0) is (locally) absolutely continuous in t ≥ 0 and

b(t) → 0 as t → +∞,
...3 ωt : D → C is univalent and ωs(D) ⊃ ωt(D) whenever 0 ≤ s ≤ t.

Then, similarly, ω(z, t) satisfies the differential equation

ω̇(z, t) = −zω′(z, t)q(z, t), z ∈ D, a.e. t ≥ 0,

where q(z, t) = qt(z) is analytic for each t, measurable in t ≥ 0 for
each z ∈ D and satisfies Re qt(z) > 0 on |z| < 1 for a.e. t ≥ 0.
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Proof of the main result Existence of the Inverse Löwner chain

Existence of the Inverse Löwner chain

Conversely, suppose that a measurable family qt(z) = q(z, t) of
analytic functions on D with Re qt > 0 is given.

If furthermore
∫ ∞

0

Re q(0, t)dt = +∞,

then there is an inverse Löwner chain ωt(z) = ω(z, t) satisfying

ω̇(z, t) = −zω′(z, t)q(z, t), z ∈ D, a.e. t ≥ 0

and ω(z, 0) = z for z ∈ D.
Note that ω(0, t) = ω(0, 0) = 0 for t ≥ 0.
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Proof of the main result Betker’s theorem, revisited

Betker’s theorem, revisited

Recall:
.
Betker’s Theorem
..

.

. ..

.

.

Let f(z, t) be a Löwner chain with ḟ(z, t) = zf ′(z, t)p(z, t) and∫∞
0 Re p(0, t)dt = +∞. Suppose that there is a mesurable family of
analytic functions qt(z) = q(z, t) on D and a constant k ∈ [0, 1) such
that ∣∣∣∣∣

p(z, t)− q(z, t)

p(z, t) + q(z, t)

∣∣∣∣∣ ≤ k, z ∈ D, a.e. t ≥ 0.

Then f0(z) = f(z, 0) has a k-qc extension f̃0 : C → C.

The extension is given in such a way that

f̃0(1/ω(ζ, t)) = f(ζ, t), |ζ| = 1, t ≥ 0,

where ω(z, t) is the inverse Löwner chain for q(z, t).
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Proof of the main result Betker’s lemma

Betker’s lemma
.
Lemma (Betker 1992)
..

.

. ..

.

.

Let 0 ≤ k < 1 be a constant. Suppose q(z, t) = qt(z) is analytic on
|z| < 1 for each t, measurable in t ≥ 0 for each z ∈ D and satisfies

∣∣∣∣
1− qt(z)

1 + qt(z)

∣∣∣∣ ≤ k

for z ∈ D and a.e. t ≥ 0, then there exists an inverse Löwner chain
ωt(z) = ω(z, t) such that ω0(z) = z, z ∈ D,

ω̇(z, t) = −zω′(z, t)q(z, t), z ∈ D, a.e. t ≥ 0,

ωt is continuous and injective on D for each t ≥ 0. Moreover, the
map Ω : C → C defined in the following is k-qc:

Ω(e−tζ) = ω(ζ, t), t ≥ 0, ζ ∈ T, and Ω(z) = z, |z| > 1.
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Proof of the main result Complex dilatation of Ω(z)

Complex dilatation of Ω(z)

The complex dilatation of the map Ω In Betker’s lemma can be
computed as

µΩ(z) =
∂̄Ω

∂Ω
=

z

z̄
· q(ζ, t)− 1

q(ζ, t) + 1
= ζ2ψ(ζ, t), z = e−tζ ∈ D,

where

ψt(z) = ψ(z, t) =
q(z, t)− 1

q(z, t) + 1
.

Note that |ψt| ≤ k < 1 for a.e. t ≥ 0.
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Proof of the main result Proof of the main result

Proof of the main result

Recall the hypothesis. For a µ ∈ M(D), set ψt(ζ) = ζ−2µ(e−tζ) for
t ≥ 0 and ζ ∈ T. Suppose that ψt ∈ H∞(T) for almost every t ≥ 0.

Then there is a function ϕt(z) = ϕ(z, t) analytic in z and measurable
in t with ϕ∗

t = ψt for a.e. t ≥ 0. Let

q(z, t) =
1 + ϕ(z, t)

1− ϕ(z, t)
.

Then ∣∣∣∣
q(z, t)− 1

q(z, t) + 1

∣∣∣∣ = |ϕ(z, t)| ≤ k,

where k = ∥µ∥∞ < 1. Let Ω be the qc map given in Betker’s lemma.
Then

µΩ(z) = ζ2ψ(ζ, t) = µ(z)

for z = e−tζ ∈ D. Thus Ω = fµ. Since Ω = id on T, we conclude
that µ ∈ M0(D).
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Proof of the main result

Thank you very much for your attension!
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