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Relationship diagram�� ��Mean value formula

(A)

↙↗ ↖↘

(B)

�� ��Overdetermined problem ←−−→

(B)

�� ��Deformation flow (e.g. Hele-Shaw flow)

l�� ��Löwner-Kufarev equation

Problem: For given µ, find Ω admitting the mean value formula.

(A) Another equivalent formulation in terms of a PDE.

(B) µ(t) 7→ Ω(t) induces an evolution of domains.
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h dµ =
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Ω

h dx, or

Z

h dµ =

Z

∂Ω

h dσ.� �
h ∈ H(Ω): the space of all harmonic functions on Ω.

Problem: For given µ, find Ω admitting the mean value formula.

Our aim: Uniqueness of Ω for measures µ ∼ cδ0.

Proof is based on the existence of a continuous family of domains Ω(t)
covering Rn, which is implied by the global-in-time solvability of the flow.
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(A) Overdetermined problem: reformulation by PDE

The following are equivalent:

(1) Validity of the mean value formula� �
Z

h dµ =

Z

∂Ω

h dσ for all h ∈ H(Ω).� �
(2) Solvability of the overdetermined problem� �

8

>

<

>

:

−∆u = µ in Ω,

u = 0 on ∂Ω,

−∂nu = 1 on ∂Ω.� �

�� ��Mean value formula

(A)↙↗ ↖↘�� ��Overdetermined problem ←−→
�� ��Deformation flow (e.g. Hele-Shaw flow)
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u = 0 on ∂Ω,
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(Proof.) Indeed, “(1) ⇒ (2)” immediately follows by setting

u(x) :=

Z

E(x −y) dµ(y) −
Z

∂Ω
E(x −y) dσ(y).

Conversely, “(1) ⇐ (2)” follows from
Z

h dµ=

Z

Ω
h(−∆u) dx

=

Z

∂Ω
(∂nhu−h∂nu) dσ=

Z

∂Ω
h dσ.

But, it is still unclear if uniqueness is preserved under small perturbation of
measure. We derive deformation flow of Ω(t) for a parametrized measure µ(t)
to construct a continuous family of Ω(t). This deduces the uniqueness!
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(B) Deformation flow

Let µ(t) be a (prescribed) parametrized measure, and suppose that ∂Ω(0)
admits the mean value formula for µ(0). How do we construct Ω(t) for µ(t)?

Deformation flow� �
vn = p on ∂Ω(t), with

(

−∆p = δ0 in Ω(t)

∂np+ Hp= 0 on ∂Ω(t)� �
H: mean curvature of ∂Ω(t)

vn

Ω(t)

�� ��Mean value formula

(A)↙↗ ↖↘ (B)�� ��Overdetermined problem ←−−→
(B)

�� ��Deformation flow (e.g. Hele-Shaw flow)
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Let {∂Ω(t)}0≤t<T be a C3+α family of surfaces with positive mean curvature.
Then, the following are equivalent:

(i) {∂Ω(t)} is a solution to the deformation flow;

(ii) Each ∂Ω(t) admits the mean value formula
Z

h dµ(t) =

Z

∂Ω(t)
h dσ

“

∀h ∈ H(Ω(t))
”

.

{∂Ω(t)}0≤t<T is called a C3+α family of surfaces if ∂Ω(t) is locally

represented as graph of a C3+α function and its time derivative is of C2+α.

8 / 15



Introduction
Flow characterization of mean value formulas

Uniqueness of admissible domain for mean value formula

(A) Overdetermined problem
(B) Deformation flow

.

.

(B) Deformation flow

Let µ(t) be a (prescribed) parametrized measure, and suppose that ∂Ω(0)
admits the mean value formula for µ(0). How do we construct Ω(t) for µ(t)?

Deformation flow� �
vn = p on ∂Ω(t), with

(

−∆p = δ0 in Ω(t)

∂np+ Hp= 0 on ∂Ω(t)� �

.

Theorem

.

.

.

. ..

.

.

Let {∂Ω(t)}0≤t<T be a C3+α family of surfaces with positive mean curvature.
Then, the following are equivalent:

(i) {∂Ω(t)} is a solution to the deformation flow;

(ii) Each ∂Ω(t) admits the mean value formula
Z

h dµ(t) =

Z

∂Ω(t)
h dσ

“

∀h ∈ H(Ω(t))
”

.

{∂Ω(t)}0≤t<T is called a C3+α family of surfaces if ∂Ω(t) is locally

represented as graph of a C3+α function and its time derivative is of C2+α.

8 / 15



Introduction
Flow characterization of mean value formulas

Uniqueness of admissible domain for mean value formula

(A) Overdetermined problem
(B) Deformation flow

.

.

(B) Deformation flow

Let µ(t) be a (prescribed) parametrized measure, and suppose that ∂Ω(0)
admits the mean value formula for µ(0). How do we construct Ω(t) for µ(t)?

Deformation flow� �
vn = p on ∂Ω(t), with

(

−∆p = δ0 in Ω(t)

∂np+ Hp= 0 on ∂Ω(t)� �

.

Theorem

.

.

.

. ..

.

.

Let {∂Ω(t)}0≤t<T be a C3+α family of surfaces with positive mean curvature.
Then, the following are equivalent:

(i) {∂Ω(t)} is a solution to the deformation flow;

(ii) Each ∂Ω(t) admits the mean value formula
Z

h dµ(t) =

Z

∂Ω(t)
h dσ

“

∀h ∈ H(Ω(t))
”

.

{∂Ω(t)}0≤t<T is called a C3+α family of surfaces if ∂Ω(t) is locally

represented as graph of a C3+α function and its time derivative is of C2+α.

8 / 15



Introduction
Flow characterization of mean value formulas

Uniqueness of admissible domain for mean value formula

(A) Overdetermined problem
(B) Deformation flow

.

.

(B) Deformation flow: a formal derivation
The infinitesimal deformation of ∂Ω(t) is (formally) derived by substituting

∂Ω(t+ ε) = ∂Ω(t) + εvn
−→n + O(ε2),

u(x) = u0(x) + εp(x) + O(ε2)

into the overdetermined problem
8

>

<

>

:

−∆u = µ(t+ ε) in Ω(t+ ε)

u = 0 on ∂Ω(t+ ε)

∂nu = −1 on ∂Ω(t+ ε)

⇒

vn = p on ∂Ω(t)
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Main result

Generalized mean value formula� �
Z

h dµ =

Z

∂Ω

h dσ� �
µ = ωδ0 ⇒ Ω = B. (ω := |SN−1|)

Question: Uniqueness of Ω admitting the mean value formula for µ
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Main result

.

Theorem (Stability of the mean value formula)

.

.

.

. ..

.

.

There is η0 > 0 s.t. for µ with ‖µ − ωδ0‖ < η0 and supp µ ⊂ B(0, η0),

(i) there exists a unique smooth domain Ω = Ωρ admitting GMVF for µ;

(ii) moreover, if µ ∈Mk for k ∈ N ∪ {0}, then

‖ρ‖Cl(SN−1) ≤ C
“

‖µ − ωδ0‖ + (diam supp µ)N−1
”1+

k+1
N−1

−ε

holds with a positive constant C = C(k, ε, l).

Mk :=
n

µ
˛

˛

˛

‖µ‖ = ω,
R

h dµ = 0 for h ∈
Sk

j=1 Hj

o

, where Hj is

the space of homogeneous harmonic polynomials of degree j ∈ N.

Therefore, we established

Uniqueness and Stability hold under small perturbation of measure;

Higher symmetry of µ implies stronger stability of mean value formula.
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.

.

Outline of proof
Assume µ = (ω − ‖ν‖)δ0 + ν, where ‖ν‖ + (diam supp ν)N−1 � 1.

.

. .
1 Construction of a “good” solution:

Derivation of the deformation flow:

∂Ω(t+ ε) = ∂Ω(t) + εvn
−→n + · · ·, u(x, t+ ε) = u0 + εp+ · · ·


−∆u = µ(t+ ε) in Ω(t+ ε),

u = 0 on ∂Ω(t+ ε),

−∂nu = 1 on ∂Ω(t+ ε).

⇒
vn = p on ∂Ω(t),
(

−∆p= µ′(t) in Ω(t),

−∂np= Hp on ∂Ω(t).

µ(t) = (ω − ‖ν‖)δ0 + tν , Ω(0) = a ball.

Solvability of the flow (O. 2014):
Linearized operator generates analytic semigroup in hl+α.

Characterization of invariant manifolds:
Global-in-time solvability for ν̃ + tδ0 and Ω(0) ∼ a ball,
Infinitely many conserved quantities (harmonic moments).

.

.

.

2 Uniqueness: Maximum principle applied to u − ũ where ũ is a super or
subsolution to ODP for Ω̃ with Ω̃ ⊃ Ω or Ω̃ ⊂ Ω. The construction of
such ũ and Ω̃ relies on the global-in-time solvability of the flow.
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Outline of proof: Uniqueness
Let us denote by Ω∗ the domain we constructed, and assume that there is another
different domain Ω satisfying GMVF, i.e.,

8

>

<

>

:

−∆u∗ = µ in Ω∗,

u∗ = 0 on ∂Ω∗,

∂nu∗ = −1 on ∂Ω∗,

and

8

>

<

>

:

−∆u = µ in Ω,

u = 0 on ∂Ω,

∂nu = −1 on ∂Ω.

Moreover, by construction, Ω∗ ∼ B and u∗ > 0 in Ω∗.

Ω ⊂ Ω∗ holds.

Otherwise, by using the flow for the initial domain Ω(0) = Ω∗,
we obtain Ω(t∗), t∗ > 0, satisfying Ω ⊂ Ω(t∗), ∂Ω ∩∂Ω(t∗) 6= ∅ and

the solvability of

8

>

<

>

:

−∆v = µ+ t∗δ0 in Ω(t∗),

v = 0 on ∂Ω(t∗),

∂nv = −1 on ∂Ω(t∗).

with v >0 in Ω(t∗).

Hence, w := u−v is subharmonic in Ω and w ≤ 0 on ∂Ω. By Hopf’s lemma,

0 < ∂nw(x)

= ∂nu(x) −∂nv(x) = 0

for x ∈ ∂Ω ∩∂Ω(t∗),

a contradiction.

A comparison argument yields B(0,1 −ε) ⊂ Ω ⊂ Ω∗ with ε �1.

Now Ω ⊃ Ω∗ follows from a similar (but a little more involved) argument with
Ω(0) = B(0,1 −ε).
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Let us denote by Ω∗ the domain we constructed, and assume that there is another
different domain Ω satisfying GMVF, i.e.,
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:

−∆u∗ = µ in Ω∗,

u∗ = 0 on ∂Ω∗,

∂nu∗ = −1 on ∂Ω∗,

and

8

>

<

>

:

−∆u = µ in Ω,

u = 0 on ∂Ω,

∂nu = −1 on ∂Ω.

Moreover, by construction, Ω∗ ∼ B and u∗ > 0 in Ω∗.

Ω ⊂ Ω∗ holds.

Otherwise, by using the flow for the initial domain Ω(0) = Ω∗,
we obtain Ω(t∗), t∗ > 0, satisfying Ω ⊂ Ω(t∗), ∂Ω ∩∂Ω(t∗) 6= ∅ and

the solvability of

8
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>

:

−∆v = µ+ t∗δ0 in Ω(t∗),

v = 0 on ∂Ω(t∗),

∂nv = −1 on ∂Ω(t∗).

with v >0 in Ω(t∗).

Hence, w := u−v is subharmonic in Ω and w ≤ 0 on ∂Ω. By Hopf’s lemma,

0 < ∂nw(x)

= ∂nu(x) −∂nv(x) = 0

for x ∈ ∂Ω ∩∂Ω(t∗),

a contradiction.

A comparison argument yields B(0,1 −ε) ⊂ Ω ⊂ Ω∗ with ε �1.

Now Ω ⊃ Ω∗ follows from a similar (but a little more involved) argument with
Ω(0) = B(0,1 −ε).
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Summary

Flow characterization of mean value formulas

Continuous family of domains admitting mean value formulas is shown to
form a flow described by an evolution equation.

Uniqueness and stability of mean value formula

Uniqueness and stability hold under small perturbation of measure.

Higher symmetry of µ implies stronger stability of mean value formula.

Final remark

The result holds for the general mean value formula
Z

h dµ =

Z

Ω

hf dx +

Z

∂Ω

hg dσ with f, g satisfying a scale law.
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	Thank you for your attention!
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