On a deformation flow for an inverse problem in potential theory

Michiaki Onodera

Kyushu University

International Workshop on Conformal Dynamics and Loewner Theory Tokyo Institute of Technology November 22, 2014

- Relationship diagram
- What's known about mean value formula

2 Flow characterization of mean value formulas

- (A) Overdetermined problem
- (B) Deformation flow

Oniqueness of admissible domain for mean value formula

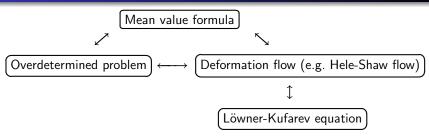
- Main result
- Outline of proof

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula Relationship diagram What's known about mean value formula

Introduction

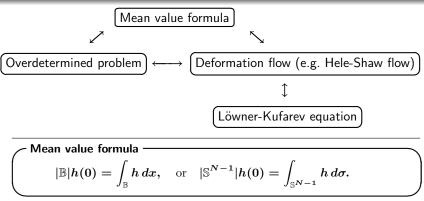
Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula Relationship diagram What's known about mean value formula

Relationship diagram



Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula Relationship diagram What's known about mean value formula

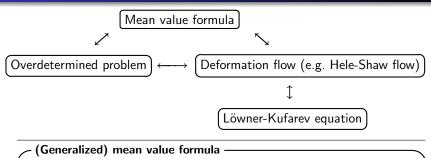
Relationship diagram



 $h \in H(\overline{\mathbb{B}})$: the space of all harmonic functions on $\overline{\mathbb{B}}$.

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula Relationship diagram What's known about mean value formula

Relationship diagram



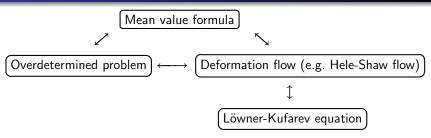
$$\int h\,d\mu = \int_\Omega h\,dx, \quad ext{or} \quad \int h\,d\mu = \int_{\partial\Omega} h\,d\sigma.$$

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula

Relationship diagram What's known about mean value formula

Relationship diagram



 \sim (Generalized) mean value formula $- \int h \, d\mu = \int_{\Omega} h \, dx$, or $\int h \, d\mu = \int_{\partial \Omega} h \, d\sigma$.

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula

Relationship diagram What's known about mean value formula

Relationship diagram

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

Problem: For given μ , find Ω admitting the mean value formula.

(A) Another equivalent formulation in terms of a PDE.

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula Relationship diagram What's known about mean value formula

Relationship diagram

 \checkmark (Generalized) mean value formula - $\int h \, d\mu = \int_{\Omega} h \, dx, \quad ext{or} \quad \int h \, d\mu = \int_{\partial \Omega} h \, d\sigma.$

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

Problem: For given μ , find Ω admitting the mean value formula.

(A) Another equivalent formulation in terms of a PDE. (B) $\mu(t) \mapsto \Omega(t)$ induces an evolution of domains.

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula

Relationship diagram What's known about mean value formula

What's known about mean value formula

- (Generalized) mean value formula

$$\int h \, d\mu = \int_{\Omega} h \, dx, \quad ext{or} \quad \int h \, d\mu = \int_{\partial \Omega} h \, d\sigma.$$

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula

Relationship diagram What's known about mean value formula

What's known about mean value formula

- (Generalized) mean value formula

$$\int h \, d\mu = \int_{\Omega} h \, dx, \quad ext{or} \quad \int h \, d\mu = \int_{\partial \Omega} h \, d\sigma.$$

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

	Domains	Surfaces
Existence	Sakai ('82, '83) Gustafsson ('85)	Beurling ('57), Henrot ('94) Gustafsson & Shahgholian ('96)

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula

Relationship diagram What's known about mean value formula

What's known about mean value formula

- (Generalized) mean value formula

$$\int h \, d\mu = \int_{\Omega} h \, dx, \quad ext{or} \quad \int h \, d\mu = \int_{\partial \Omega} h \, d\sigma.$$

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

	Domains	Surfaces
Existence	Sakai ('82, '83)	Beurling ('57), Henrot ('94)
	Gustafsson ('85)	Gustafsson & Shahgholian ('96)
Uniqueness	Sakai ('82)	Shahgholian ('94): <u>convex</u>
		Henrot ('94): counter example

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula

Relationship diagram What's known about mean value formula

What's known about mean value formula

- (Generalized) mean value formula

$$\int h \, d\mu = \int_{\Omega} h \, dx, \quad ext{or} \quad \int h \, d\mu = \int_{\partial \Omega} h \, d\sigma.$$

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

	Domains	Surfaces
Existence	Sakai ('82, '83)	Beurling ('57), Henrot ('94)
	Gustafsson ('85)	Gustafsson & Shahgholian ('96)
Uniqueness	Sakai ('82)	Shahgholian ('94): <u>convex</u>
		Henrot ('94): counter example

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula Relationship diagram What's known about mean value formula

What's known about mean value formula

- (Generalized) mean value formula

$$\int h \, d\mu = \int_{\Omega} h \, dx$$
, or $\int h \, d\mu = \int_{\partial \Omega} h \, d\sigma$.

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

	Domains	Surfaces
Existence	Sakai ('82, '83)	Beurling ('57), Henrot ('94)
	Gustafsson ('85)	Gustafsson & Shahgholian ('96)
Uniqueness	Sakai ('82)	Shahgholian ('94): <u>convex</u> Henrot ('94): counter example

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula

Relationship diagram What's known about mean value formula

What's known about mean value formula

- (Generalized) mean value formula

$$\int h \, d\mu = \int_{\Omega} h \, dx, \quad ext{or} \quad \int h \, d\mu = \int_{\partial \Omega} h \, d\sigma.$$

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

Problem: For given μ , find Ω admitting the mean value formula.

	Domains	Surfaces
Existence	Sakai ('82, '83)	Beurling ('57), Henrot ('94)
	Gustafsson ('85)	Gustafsson & Shahgholian ('96)
Uniqueness	Sakai ('82)	Shahgholian ('94): <u>convex</u>
		Henrot ('94): counter example
Deformation flow	Many authors ('47–)	O. (to appear in Math. Ann.)
$\mu(t)\mapsto \Omega(t)$	Richardson ('72): HS flow	

Our aim: Uniqueness of Ω for measures $\mu \sim c\delta_0$.

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula

Relationship diagram What's known about mean value formula

What's known about mean value formula

- (Generalized) mean value formula

$$\int h \, d\mu = \int_{\Omega} h \, dx$$
, or $\int h \, d\mu = \int_{\partial \Omega} h \, d\sigma$.

 $h \in H(\overline{\Omega})$: the space of all harmonic functions on $\overline{\Omega}$.

Problem: For given μ , find Ω admitting the mean value formula.

	Domains	Surfaces
Existence	Sakai ('82, '83)	Beurling ('57), Henrot ('94)
	Gustafsson ('85)	Gustafsson & Shahgholian ('96)
Uniqueness	Sakai ('82)	Shahgholian ('94): <u>convex</u>
		Henrot ('94): counter example
Deformation flow	Many authors ('47–)	O. (to appear in Math. Ann.)
$\mu(t)\mapsto \Omega(t)$	Richardson ('72): HS flow	

Our aim: Uniqueness of Ω for measures $\mu \sim c\delta_0$.

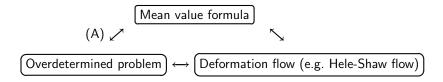
Proof is based on the existence of a continuous family of domains Ω(t) covering ℝⁿ, which is implied by the global-in-time solvability of the flow.

A) Overdetermined problem

Flow characterization of mean value formulas

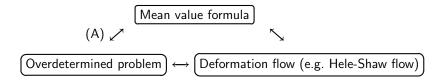
(A) Overdetermined problem (B) Deformation flow

(A) Overdetermined problem: reformulation by PDE



(A) Overdetermined problem: reformulation by PDE

The following are equivalent:

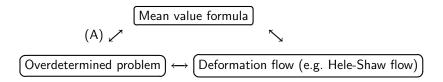


(A) Overdetermined problem (B) Deformation flow

(A) Overdetermined problem: reformulation by PDE

The following are equivalent:

(1) Validity of the mean value formula $\int h \, d\mu = \int_{\partial\Omega} h \, d\sigma$ for all $h \in H(\overline{\Omega}).$



(A) Overdetermined problem (B) Deformation flow

(A) Overdetermined problem: reformulation by PDE

The following are equivalent:

(1) Validity of the mean value formula $\int h \, d\mu = \int_{\partial\Omega} h \, d\sigma$ for all $h \in H(\overline{\Omega}).$

(2) Solvability of the overdetermined problem

$$-\Delta u = \mu \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega,$$
$$-\partial_{-} u = 1 \quad \text{on } \partial \Omega$$

$$(-\partial_n u = 1 \quad \text{on } \partial\Omega.$$

$$(A) \swarrow (A) \swarrow (A) \swarrow (A) \longleftrightarrow (A) \longleftrightarrow (A) \longleftrightarrow (A) \longleftrightarrow (A) \longleftrightarrow (A)$$

(A) Overdetermined problem (B) Deformation flow

(A) Overdetermined problem: reformulation by PDE

The following are equivalent:

- (1) Validity of the mean value formula $\int h \, d\mu = \int_{\partial\Omega} h \, d\sigma$ for all $h \in H(\overline{\Omega}).$

(2) Solvability of the overdetermined problem

$$\left\{egin{array}{ll} -\Delta u=\mu & ext{in }\Omega,\ u=0 & ext{on }\partial\Omega,\ -\partial_n u=1 & ext{on }\partial\Omega. \end{array}
ight.$$

(Proof.) Indeed, " $(1) \Rightarrow (2)$ " immediately follows by setting

$$u(x):=\int E(x-y)\,d\mu(y)-\int_{\partial\Omega}E(x-y)\,d\sigma(y).$$

Conversely, "(1) \Leftarrow (2)" follows from $\int h \, d\mu = \int_{\Omega} h(-\Delta u) \, dx$ $= \int_{\partial \Omega} (\partial_n h u - h \partial_n u) \, d\sigma = \int_{\partial \Omega} h \, d\sigma.$

7/15

(A) Overdetermined problem (B) Deformation flow

(A) Overdetermined problem: reformulation by PDE

The following are equivalent:

(1) Validity of the mean value formula $\int h \, d\mu = \int_{\partial\Omega} h \, d\sigma$ for all $h \in H(\overline{\Omega}).$

- (2) Solvability of the overdetermined problem -

$$\left(egin{array}{cc} -\Delta u=\mu & ext{in }\Omega,\ u=0 & ext{on }\partial\Omega,\ -\partial_n u=1 & ext{on }\partial\Omega. \end{array}
ight.$$

As a consequence ...

• Symmetry of Ω , i.e., $\Omega = \mathbb{B}$, holds for $\mu = c\delta_0$ by the method of moving planes.

(A) Overdetermined problem (B) Deformation flow

(A) Overdetermined problem: reformulation by PDE

The following are equivalent:

(1) Validity of the mean value formula $\int h \, d\mu = \int_{\partial\Omega} h \, d\sigma$ for all $h \in H(\overline{\Omega}).$

- (2) Solvability of the overdetermined problem

$$egin{pmatrix} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ -\partial_n u = 1 & ext{on } \partial \Omega. \end{cases}$$

As a consequence ...

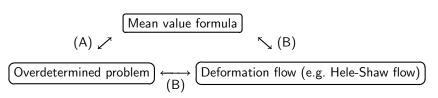
• Symmetry of Ω , i.e., $\Omega = \mathbb{B}$, holds for $\mu = c\delta_0$ by the method of moving planes.

But, it is still unclear if uniqueness is preserved under small perturbation of measure. We derive *deformation flow* of $\Omega(t)$ for a parametrized measure $\mu(t)$ to construct a continuous family of $\Omega(t)$. This deduces the uniqueness!

Flow characterization of mean value formulas Uniqueness of admissible domain for mean value formula

(B) Deformation flow

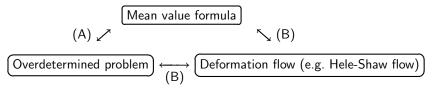
(A) Overdetermined problem(B) Deformation flow



(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow

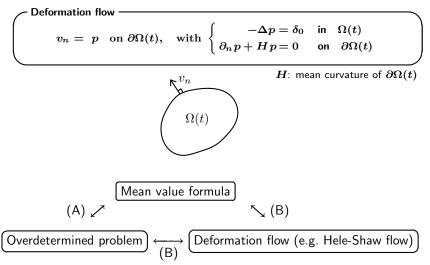
• Let $\mu(t)$ be a (prescribed) parametrized measure, and suppose that $\partial\Omega(0)$ admits the mean value formula for $\mu(0)$. How do we construct $\Omega(t)$ for $\mu(t)$?



(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow

• Let $\mu(t)$ be a (prescribed) parametrized measure, and suppose that $\partial\Omega(0)$ admits the mean value formula for $\mu(0)$. How do we construct $\Omega(t)$ for $\mu(t)$?



(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow

• Let $\mu(t)$ be a (prescribed) parametrized measure, and suppose that $\partial\Omega(0)$ admits the mean value formula for $\mu(0)$. How do we construct $\Omega(t)$ for $\mu(t)$?

Deformation flow

$$v_n = p ext{ on } \partial \Omega(t), ext{ with } egin{cases} -\Delta p = \delta_0 & ext{in } \Omega(t) \ \partial_n p + H p = 0 & ext{on } \partial \Omega(t) \end{cases}$$

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow

• Let $\mu(t)$ be a (prescribed) parametrized measure, and suppose that $\partial\Omega(0)$ admits the mean value formula for $\mu(0)$. How do we construct $\Omega(t)$ for $\mu(t)$?

Deformation flow

$$v_n = \ p \quad \text{on } \partial \Omega(t), \quad \text{with } \begin{cases} -\Delta p = \delta_0 & \text{in } \ \Omega(t) \\ \partial_n p + H \, p = 0 & \text{on } \ \partial \Omega(t) \end{cases}$$

Theorem

Let $\{\partial \Omega(t)\}_{0 \le t < T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

• $\{\partial \Omega(t)\}_{0 \le t < T}$ is called a $C^{3+\alpha}$ family of surfaces if $\partial \Omega(t)$ is locally represented as graph of a $C^{3+\alpha}$ function and its time derivative is of $C^{2+\alpha}$.

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow

• Let $\mu(t)$ be a (prescribed) parametrized measure, and suppose that $\partial\Omega(0)$ admits the mean value formula for $\mu(0)$. How do we construct $\Omega(t)$ for $\mu(t)$?

Deformation flow

$$v_n = p \text{ on } \partial \Omega(t), \text{ with } egin{cases} -\Delta p = \delta_0 & ext{in } \Omega(t) \ \partial_n p + H p = 0 & ext{on } \partial \Omega(t) \end{cases}$$

Theorem

Let $\{\partial \Omega(t)\}_{0 \le t < T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

(i) $\{\partial \Omega(t)\}$ is a solution to the deformation flow;

• $\{\partial \Omega(t)\}_{0 \le t < T}$ is called a $C^{3+\alpha}$ family of surfaces if $\partial \Omega(t)$ is locally represented as graph of a $C^{3+\alpha}$ function and its time derivative is of $C^{2+\alpha}$.

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow

• Let $\mu(t)$ be a (prescribed) parametrized measure, and suppose that $\partial\Omega(0)$ admits the mean value formula for $\mu(0)$. How do we construct $\Omega(t)$ for $\mu(t)$?

Deformation flow

$$v_n = p \text{ on } \partial \Omega(t), \text{ with } egin{cases} -\Delta p = \delta_0 & ext{in } \Omega(t) \ \partial_n p + H p = 0 & ext{on } \partial \Omega(t) \end{cases}$$

Theorem

Let $\{\partial \Omega(t)\}_{0 \le t < T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

- (i) $\{\partial \Omega(t)\}$ is a solution to the deformation flow;
- (ii) Each $\partial \Omega(t)$ admits the mean value formula

$$\int h \ d\mu(t) = \int_{\partial\Omega(t)} h \ d\sigma \qquad \left(orall h \in H(\overline{\Omega(t)})
ight).$$

• $\{\partial \Omega(t)\}_{0 \le t < T}$ is called a $C^{3+\alpha}$ family of surfaces if $\partial \Omega(t)$ is locally represented as graph of a $C^{3+\alpha}$ function and its time derivative is of $C^{2+\alpha}$.

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

4

$$\left\{egin{array}{ll} -\Delta u = \mu(t+arepsilon) & ext{in } \Omega(t+arepsilon) \ u = 0 & ext{on } \partial \Omega(t+arepsilon) \ \partial_n u = -1 & ext{on } \partial \Omega(t+arepsilon) \end{array}
ight.$$

where u_0 solves ODP with $\varepsilon = 0$.

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

Ś

$$egin{pmatrix} -\Delta u = \mu(t+arepsilon) & ext{in } \Omega(t+arepsilon) \ u = 0 & ext{on } \partial \Omega(t+arepsilon) \ \partial_n u = -1 & ext{on } \partial \Omega(t+arepsilon) \end{cases}$$

where u_0 solves ODP with $\varepsilon = 0$.

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\left\{ \begin{array}{ll} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) \end{array} \right\} \quad \left\{ \begin{array}{l} -\Delta p = \mu'(t) & \text{in } \Omega(t) \\ \end{array} \right.$$

where u_0 solves ODP with $\varepsilon = 0$.

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\left\{ \begin{array}{ll} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) \end{array} \right\} \quad \left\{ \begin{array}{l} -\Delta p = \mu'(t) & \text{in } \Omega(t) \\ \end{array} \right.$$

where u_0 solves ODP with $\varepsilon = 0$.

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,

•
$$0 = u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$$

for $x \in \partial \Omega(t)$,

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\left\{ \begin{array}{ll} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) \end{array} \right\} \quad \left\{ \begin{array}{l} -\Delta p = \mu'(t) & \text{in } \Omega(t) \\ \end{array} \right.$$

where u_0 solves ODP with $\varepsilon = 0$.

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,

•
$$0 = u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon p(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$$

for $x \in \partial \Omega(t)$,

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) \end{cases} \begin{cases} -\Delta p = \mu'(t) & \text{in } \Omega(t) \\ \end{cases}$$

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,
• $0 = u(x + \varepsilon v_n \,\overline{n}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \,\overline{n}) + \varepsilon p(x + \varepsilon v_n \,\overline{n}) + O(\varepsilon^2)$

$$= u_0(x) + \varepsilon v_n \partial_n u_0(x) + \varepsilon p(x) + O(\varepsilon^2)$$

for $x \in \partial \Omega(t)$,

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) \end{cases} \begin{cases} -\Delta p = \mu'(t) & \text{in } \Omega(t) \\ \end{cases}$$

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,
• $0 = u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon p(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= u_0(x) + \varepsilon v_n \partial_n u_0(x) + \varepsilon p(x) + O(\varepsilon^2)$
 $= -\varepsilon v_n + \varepsilon p(x) + O(\varepsilon^2)$ for $x \in \partial \Omega(t)$,

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) & \boldsymbol{v_n} = \boldsymbol{p} \quad \text{on } \partial \Omega(t) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) \Rightarrow \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) \end{cases} \begin{cases} -\Delta \boldsymbol{p} = \mu'(t) \quad \text{in } \Omega(t) \\ \end{cases}$$

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,
• $0 = u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon p(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= u_0(x) + \varepsilon v_n \partial_n u_0(x) + \varepsilon p(x) + O(\varepsilon^2)$
 $= -\varepsilon v_n + \varepsilon p(x) + O(\varepsilon^2)$ for $x \in \partial \Omega(t)$,

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\begin{pmatrix} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) & v_n = p & \text{on } \partial \Omega(t) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) & \Rightarrow \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) & \end{cases} \begin{cases} -\Delta p = \mu'(t) & \text{in } \Omega(t) \\ \end{array}$$

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,
• $0 = u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon p(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= u_0(x) + \varepsilon v_n \partial_n u_0(x) + \varepsilon p(x) + O(\varepsilon^2)$
 $= -\varepsilon v_n + \varepsilon p(x) + O(\varepsilon^2)$ for $x \in \partial \Omega(t)$,
• $0 = 1 + \partial_{n \partial \Omega(t+\varepsilon)} u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$

for
$$x \in \partial \Omega(t)$$
. 9/15

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\begin{pmatrix} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) & v_n = p & \text{on } \partial \Omega(t) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) & \Rightarrow \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) & \end{cases} \begin{cases} -\Delta p = \mu'(t) & \text{in } \Omega(t) \\ \end{array}$$

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,
• $0 = u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon p(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= u_0(x) + \varepsilon v_n \partial_n u_0(x) + \varepsilon p(x) + O(\varepsilon^2)$
 $= -\varepsilon v_n + \varepsilon p(x) + O(\varepsilon^2)$ for $x \in \partial \Omega(t)$,
• $0 = 1 + \partial_n u(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon \partial_\tau u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$

for
$$x \in \partial \Omega(t)$$
. 9/15

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\begin{pmatrix} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) & v_n = p & \text{on } \partial \Omega(t) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) & \Rightarrow \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) & \end{cases} \begin{cases} -\Delta p = \mu'(t) & \text{in } \Omega(t) \\ \end{array}$$

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,
• $0 = u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon p(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= u_0(x) + \varepsilon v_n \partial_n u_0(x) + \varepsilon p(x) + O(\varepsilon^2)$
 $= -\varepsilon v_n + \varepsilon p(x) + O(\varepsilon^2)$ for $x \in \partial \Omega(t)$,
• $0 = 1 + \partial_n u(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon \partial_\tau u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= \varepsilon v_n \partial_n^2 u_0(x) + \varepsilon \partial_n p(x) + \varepsilon \partial_\tau u_0(x) + O(\varepsilon^2)$

for
$$x \in \partial \Omega(t)$$
. 9/15

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\begin{pmatrix} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) & \boldsymbol{v_n} = \boldsymbol{p} & \text{on } \partial \Omega(t) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) & \Rightarrow \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) & \end{cases} \begin{bmatrix} -\Delta \boldsymbol{p} = \mu'(t) & \text{in } \Omega(t) \\ \end{array}$$

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,
• $0 = u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon p(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= u_0(x) + \varepsilon v_n \partial_n u_0(x) + \varepsilon p(x) + O(\varepsilon^2)$
 $= -\varepsilon v_n + \varepsilon p(x) + O(\varepsilon^2)$ for $x \in \partial\Omega(t)$,
• $0 = 1 + \partial_n u(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon \partial_r u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= \varepsilon v_n \partial_r^2 u_0(x) + \varepsilon \partial_n n(x) + \varepsilon \partial_r u_0(x) + O(\varepsilon^2)$

$$= \varepsilon v_n \left\{ \Delta u_0 - \Delta_{\partial \Omega(t)} u_0 - H \partial_n u_0 \right\} + \varepsilon \partial_n p + O(\varepsilon^2)$$

for $x \in \partial \Omega(t)$.

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

$$\begin{pmatrix} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) & \boldsymbol{v_n} = \boldsymbol{p} & \text{on } \partial \Omega(t) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) & \Rightarrow \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) & \end{cases} \begin{bmatrix} -\Delta \boldsymbol{p} = \mu'(t) & \text{in } \Omega(t) \\ \end{array}$$

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,

•
$$0 = u(x + \varepsilon v_n \,\overline{n'}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \,\overline{n'}) + \varepsilon p(x + \varepsilon v_n \,\overline{n'}) + O(\varepsilon^2)$$

 $= u_0(x) + \varepsilon v_n \,\partial_n \,u_0(x) + \varepsilon p(x) + O(\varepsilon^2)$
 $= -\varepsilon v_n + \varepsilon p(x) + O(\varepsilon^2) \quad \text{for } x \in \partial\Omega(t),$

•
$$0 = 1 + \partial_n u(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon \partial_\tau u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$$

$$= \varepsilon v_n \partial_n^2 u_0(x) + \varepsilon \partial_n p(x) + \varepsilon \partial_\tau u_0(x) + O(\varepsilon^2)$$

$$= \varepsilon v_n \left\{ \Delta u_0 - \Delta_{\partial\Omega(t)} u_0 - H \partial_n u_0 \right\} + \varepsilon \partial_n p + O(\varepsilon^2)$$

$$= \varepsilon v_n H + \varepsilon \partial_n p + O(\varepsilon^2) \quad \text{for } x \in \partial\Omega(t).$$
9/15

(A) Overdetermined problem(B) Deformation flow

(B) Deformation flow: a formal derivation

The infinitesimal deformation of $\partial\Omega(t)$ is (formally) derived by substituting

$$egin{aligned} \partial\Omega(t+arepsilon)&=\partial\Omega(t)+arepsilon v_n\, \overrightarrow{n}+O(arepsilon^2),\ u(x)&=u_0(x)+arepsilon p(x)+O(arepsilon^2) \end{aligned}$$

into the overdetermined problem

<

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon) \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon) \\ \partial_n u = -1 & \text{on } \partial \Omega(t+\varepsilon) \end{cases} \Rightarrow \begin{cases} -\Delta p = \mu'(t) & \text{in } \Omega(t) \\ -\partial_n p = Hp & \text{on } \partial \Omega(t) \end{cases}$$

•
$$-\Delta u_0 - \varepsilon \Delta p = \mu(t) + \varepsilon \mu'(t) + O(\varepsilon^2)$$
 for $x \in \Omega(t)$,
• $0 = u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2) = u_0(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon p(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= u_0(x) + \varepsilon v_n \partial_n u_0(x) + \varepsilon p(x) + O(\varepsilon^2)$
 $= -\varepsilon v_n + \varepsilon p(x) + O(\varepsilon^2)$ for $x \in \partial\Omega(t)$,
• $0 = 1 + \partial_n u(x + \varepsilon v_n \overrightarrow{n}) + \varepsilon \partial_\tau u(x + \varepsilon v_n \overrightarrow{n}) + O(\varepsilon^2)$
 $= \varepsilon v_n \partial_n^2 u_0(x) + \varepsilon \partial_n p(x) + \varepsilon \partial_\tau u_0(x) + O(\varepsilon^2)$
 $= \varepsilon v_n \left\{ \Delta u_0 - \Delta_{\partial\Omega(t)} u_0 - H \partial_n u_0 \right\} + \varepsilon \partial_n p + O(\varepsilon^2)$
 $= \varepsilon v_n H + \varepsilon \partial_n p + O(\varepsilon^2)$ for $x \in \partial\Omega(t)$.

Uniqueness of admissible domain for mean value formula

Main result Outline of proof

Main result

✓ Generalized mean value formula

$$\int h \, d\mu = \int_{\partial\Omega} h \, d\sigma$$

•
$$\mu = \omega \delta_0 \Rightarrow \Omega = \mathbb{B}.$$

 $(\omega:=|\mathbb{S}^{N-1}|)$

Main result Outline of proof

Main result

Generalized mean value formula

$$\int h \, d\mu = \int_{\partial\Omega} h \, d\sigma$$

•
$$\mu = \omega \delta_0 \Rightarrow \Omega = \mathbb{B}.$$

$$(\omega := |\mathbb{S}^{N-1}|)$$

Question: Uniqueness of Ω admitting the mean value formula for μ

Main result Outline of proof

Main result

Generalized mean value formula

$$\int h\,d\mu = \int_{\partial\Omega} h\,d\sigma$$

•
$$\mu = \omega \delta_0 \Rightarrow \Omega = \mathbb{B}.$$

$$(\omega := |\mathbb{S}^{N-1}|)$$

Question: Uniqueness of Ω admitting the mean value formula for μ

- Uniqueness of Ω when the total variation $\|\mu \omega \delta_0\|$ is small.
- Estimate of "distance" $d(\partial\Omega, \mathbb{S}^{N-1})$ in terms of $\|\mu \omega \delta_0\|$.

Main result Outline of proof

Main result

Generalized mean value formula

$$\int h\,d\mu = \int_{\partial\Omega} h\,d\sigma$$

•
$$\mu = \omega \delta_0 \Rightarrow \Omega = \mathbb{B}.$$

$$(\omega := |\mathbb{S}^{N-1}|)$$

Question: Uniqueness of Ω admitting the mean value formula for μ

- Uniqueness of Ω when the total variation $\|\mu \omega \delta_0\|$ is small.
- Estimate of "distance" $d(\partial\Omega, \mathbb{S}^{N-1})$ in terms of $\|\mu \omega \delta_0\|$.

Total variation (norm) of a signed measure ν is defined by

 $\|
u\| := \int d
u_+ + \int d
u_-$, where $u =
u_+ -
u_-$ (Jordan decomposition).

Main result Outline of proof

Main result

✓ Generalized mean value formula

$$\int h\,d\mu = \int_{\partial\Omega} h\,d\sigma$$

•
$$\mu = \omega \delta_0 \Rightarrow \Omega = \mathbb{B}.$$

$$(\omega := |\mathbb{S}^{N-1}|)$$

Question: Uniqueness of Ω admitting the mean value formula for μ

- Uniqueness of Ω when the total variation $\|\mu \omega \delta_0\|$ is small.
- Estimate of "distance" $d(\partial\Omega, \mathbb{S}^{N-1})$ in terms of $\|\mu \omega \delta_0\|$.

Total variation (norm) of a signed measure ν is defined by

 $\|
u\| := \int d
u_+ + \int d
u_-$, where $u =
u_+ -
u_-$ (Jordan decomposition).

"Distance" is defined by $d(\partial \Omega_{\rho}, \mathbb{S}^{N-1}) := \|\rho\|_{C^{l}(\mathbb{S}^{N-1})}$ for $l \in \mathbb{N}$, where $\partial \Omega_{\rho} := \left\{ (1 + \rho(\zeta)) \zeta \mid \zeta \in \mathbb{S}^{N-1} \right\}$ for $\rho \in C(\mathbb{S}^{N-1})$.

Main result Outline of proof

Main result

Theorem (Stability of the mean value formula)

There is $\eta_0 > 0$ s.t. for μ with $\|\mu - \omega \delta_0\| < \eta_0$ and $\mathrm{supp}\,\mu \subset B(0,\eta_0)$,

(i) there exists a unique smooth domain $\Omega = \Omega_{\rho}$ admitting GMVF for μ ;

Main result Outline of proof

Main result

Theorem (Stability of the mean value formula)

There is $\eta_0>0$ s.t. for μ with $\|\mu-\omega\delta_0\|<\eta_0$ and $\mathrm{supp}\,\mu\subset B(0,\eta_0)$,

(i) there exists a unique smooth domain $\Omega = \Omega_{
ho}$ admitting GMVF for μ ;

(ii) moreover, if $\mu \in \mathfrak{M}_k$ for $k \in \mathbb{N} \cup \{0\}$, then

$$\|\rho\|_{C^{l}(\mathbb{S}^{N-1})} \leq C \left(\|\mu - \omega \delta_{0}\| + (\operatorname{diam\, supp} \mu)^{N-1}\right)^{1 + \frac{k+1}{N-1} - \varepsilon}$$

holds with a positive constant $C = C(k, \varepsilon, l)$.

Main result Outline of proof

Main result

Theorem (Stability of the mean value formula)

There is $\eta_0 > 0$ s.t. for μ with $\|\mu - \omega \delta_0\| < \eta_0$ and $\mathrm{supp}\,\mu \subset B(0,\eta_0)$,

(i) there exists a unique smooth domain $\Omega = \Omega_{
ho}$ admitting GMVF for μ ;

(ii) moreover, if $\mu \in \mathfrak{M}_k$ for $k \in \mathbb{N} \cup \{0\}$, then

$$\|
ho\|_{C^{l}(\mathbb{S}^{N-1})}\leq C\left(\|\mu-\omega\delta_{0}\|+(\operatorname{diam\,supp}\mu)^{N-1}
ight)^{1+rac{k+1}{N-1}-arepsilon}$$

holds with a positive constant $C = C(k, \varepsilon, l)$.

• $\mathfrak{M}_k := \left\{ \mu \mid \|\mu\| = \omega, \int h \, d\mu = 0 \text{ for } h \in \bigcup_{j=1}^k H_j \right\}$, where H_j is the space of homogeneous harmonic polynomials of degree $j \in \mathbb{N}$.

Main result Outline of proof

Main result

Theorem (Stability of the mean value formula)

There is $\eta_0 > 0$ s.t. for μ with $\|\mu - \omega \delta_0\| < \eta_0$ and $\mathrm{supp}\,\mu \subset B(0,\eta_0)$,

(i) there exists a unique smooth domain $\Omega = \Omega_{
ho}$ admitting GMVF for μ ;

(ii) moreover, if $\mu \in \mathfrak{M}_k$ for $k \in \mathbb{N} \cup \{0\}$, then

$$\|\rho\|_{C^{l}(\mathbb{S}^{N-1})} \leq C \left(\|\mu-\omega\delta_{0}\| + (\operatorname{diam\, supp} \mu)^{N-1}\right)^{1+\frac{k+1}{N-1}-\varepsilon}$$

holds with a positive constant $C = C(k, \varepsilon, l)$.

• $\mathfrak{M}_k := \left\{ \mu \mid \|\mu\| = \omega, \int h \, d\mu = 0 \text{ for } h \in \bigcup_{j=1}^k H_j \right\}$, where H_j is the space of homogeneous harmonic polynomials of degree $j \in \mathbb{N}$.

Therefore, we established

- Uniqueness and Stability hold under small perturbation of measure;
- Higher symmetry of μ implies stronger stability of mean value formula.

Main result Outline of proof

Outline of proof

Assume $\mu = (\omega - \|\nu\|)\delta_0 + \nu$, where $\|\nu\| + (\operatorname{diam\,supp} \nu)^{N-1} \ll 1$.

Construction of a "good" solution:

Outline of proof

4

Assume $\mu = (\omega - \|\nu\|)\delta_0 + \nu$, where $\|\nu\| + (\operatorname{diam}\operatorname{supp} \nu)^{N-1} \ll 1$.

Construction of a "good" solution:

• Derivation of the deformation flow:

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon), \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon), \\ -\partial_n u = 1 & \text{on } \partial \Omega(t+\varepsilon). \end{cases}$$

• $\mu(t) = (\omega - \|\nu\|)\delta_0 + t\nu, \quad \Omega(0) = \text{a ball.}$

Outline of proof

Assume $\mu = (\omega - \|\nu\|)\delta_0 + \nu$, where $\|\nu\| + (\operatorname{diam supp} \nu)^{N-1} \ll 1$.

Construction of a "good" solution:

• Derivation of the deformation flow:

 $\partial\Omega(t+arepsilon)=\partial\Omega(t)+arepsilon v_n\,\overrightarrow{n}+\cdots,\,\,u(x,t+arepsilon)=u_0+arepsilon\,p+\cdots$

$$\begin{array}{ll} & -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon), \\ & u = 0 & \text{on } \partial \Omega(t+\varepsilon), \\ & -\partial_n u = 1 & \text{on } \partial \Omega(t+\varepsilon). \end{array} \\ & \bullet \ \mu(t) = (\omega - \|\nu\|) \delta_0 + t\nu, \quad \Omega(0) = \text{a ball.} \end{array}$$

Outline of proof

Assume $\mu = (\omega - \|\nu\|)\delta_0 + \nu$, where $\|\nu\| + (\operatorname{diam supp} \nu)^{N-1} \ll 1$.

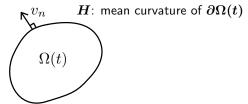
Onstruction of a "good" solution:

• Derivation of the deformation flow:

$$\partial\Omega(t+arepsilon)=\partial\Omega(t)+arepsilon v_n\,\overrightarrow{n}+\cdots,\,\,u(x,t+arepsilon)=u_0+arepsilon p+\cdots$$

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon), & \boldsymbol{v_n} = \boldsymbol{p} & \text{on } \partial \Omega(t), \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon), & \Rightarrow & \begin{cases} -\Delta \boldsymbol{p} = \mu'(t) & \text{in } \Omega(t), \\ -\partial_n u = 1 & \text{on } \partial \Omega(t+\varepsilon). & \begin{cases} -\Delta \boldsymbol{p} = \mu'(t) & \text{in } \Omega(t), \\ -\partial_n \boldsymbol{p} = H\boldsymbol{p} & \text{on } \partial \Omega(t). \end{cases} \end{cases}$$

•
$$\mu(t) = (\omega - \|\nu\|)\delta_0 + t
u$$
, $\Omega(0) =$ a ball.



Outline of proof

Assume $\mu = (\omega - \|\nu\|)\delta_0 + \nu$, where $\|\nu\| + (\operatorname{diam supp} \nu)^{N-1} \ll 1$.

O Construction of a "good" solution:

• Derivation of the deformation flow:

$$\partial\Omega(t+arepsilon)=\partial\Omega(t)+arepsilon v_n\,\overrightarrow{n}+\cdots,\,\,u(x,t+arepsilon)=u_0+arepsilon\,p+\cdots$$

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon), & v_n = p & \text{on } \partial \Omega(t), \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon), & \Rightarrow \\ -\partial_n u = 1 & \text{on } \partial \Omega(t+\varepsilon). & \begin{cases} -\Delta p = \mu'(t) & \text{in } \Omega(t), \\ -\partial_n p = Hp & \text{on } \partial \Omega(t). \end{cases}$$

•
$$\mu(t) = (\omega - \|\nu\|)\delta_0 + t\nu$$
, $\Omega(0) = a$ ball.

•
$$\Omega(1)$$
 is a solution with $u := \int_0^1 p(x,s) \, ds + u(x,0)$.

Outline of proof

Assume $\mu = (\omega - \|\nu\|)\delta_0 + \nu$, where $\|\nu\| + (\operatorname{diam supp} \nu)^{N-1} \ll 1$.

Onstruction of a "good" solution:

• Derivation of the deformation flow:

 $\partial\Omega(t+arepsilon)=\partial\Omega(t)+arepsilon v_n\,\overrightarrow{n}+\cdots,\,\,u(x,t+arepsilon)=u_0+arepsilon p+\cdots$

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon), & \boldsymbol{v_n} = \boldsymbol{p} \quad \text{on } \partial \Omega(t), \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon), \quad \Rightarrow \quad \begin{cases} -\Delta \boldsymbol{p} = \mu'(t) & \text{in } \Omega(t), \\ -\partial_n u = 1 & \text{on } \partial \Omega(t+\varepsilon). \end{cases} & \begin{cases} -\Delta \boldsymbol{p} = \mu'(t) & \text{in } \Omega(t), \\ -\partial_n \boldsymbol{p} = H\boldsymbol{p} & \text{on } \partial \Omega(t). \end{cases}$$

•
$$\mu(t)=(\omega-\|
u\|)\delta_0+t
u$$
, $\Omega(0)=$ a ball.

- $\Omega(1)$ is a solution with $u := \int_0^1 p(x,s) \, ds + u(x,0)$.
- Solvability of the flow (O. 2014):

Linearized operator generates analytic semigroup in h^{l+lpha} .

Outline of proof

Assume $\mu = (\omega - \|\nu\|)\delta_0 + \nu$, where $\|\nu\| + (\operatorname{diam supp} \nu)^{N-1} \ll 1$.

Onstruction of a "good" solution:

• Derivation of the deformation flow:

$$\partial\Omega(t+arepsilon)=\partial\Omega(t)+arepsilon v_n\,\overrightarrow{n}+\cdots,\,\,u(x,t+arepsilon)=u_0+arepsilon p+\cdots$$

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon), & \boldsymbol{v_n} = \boldsymbol{p} & \text{on } \partial \Omega(t), \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon), & \Rightarrow & \begin{cases} -\Delta \boldsymbol{p} = \mu'(t) & \text{in } \Omega(t), \\ -\partial_n u = 1 & \text{on } \partial \Omega(t+\varepsilon). & \begin{cases} -\Delta \boldsymbol{p} = \mu p'(t) & \text{on } \partial \Omega(t), \\ -\partial_n p = Hp & \text{on } \partial \Omega(t). \end{cases} \end{cases}$$

•
$$\mu(t)=(\omega-\|
u\|)\delta_0+t
u$$
, $\Omega(0)=$ a ball.

- $\Omega(1)$ is a solution with $u := \int_0^1 p(x,s) \, ds + u(x,0)$.
- Solvability of the flow (O. 2014):

Linearized operator generates analytic semigroup in $h^{l+\alpha}$.

• Characterization of invariant manifolds:

Global-in-time solvability for $\tilde{\nu} + t\delta_0$ and $\Omega(0) \sim$ a ball, Infinitely many conserved quantities (harmonic moments).

Outline of proof

Assume $\mu = (\omega - \|\nu\|)\delta_0 + \nu$, where $\|\nu\| + (\operatorname{diam supp} \nu)^{N-1} \ll 1$.

O Construction of a "good" solution:

• Derivation of the deformation flow:

$$\partial\Omega(t+arepsilon)=\partial\Omega(t)+arepsilon v_n\,\overrightarrow{n}+\cdots,\,\,u(x,t+arepsilon)=u_0+arepsilon\,p+\cdots$$

$$\begin{cases} -\Delta u = \mu(t+\varepsilon) & \text{in } \Omega(t+\varepsilon), & \boldsymbol{v_n} = \boldsymbol{p} \quad \text{on } \partial \Omega(t), \\ u = 0 & \text{on } \partial \Omega(t+\varepsilon), \quad \Rightarrow \quad \begin{cases} -\Delta \boldsymbol{p} = \mu'(t) & \text{in } \Omega(t), \\ -\partial_n u = 1 & \text{on } \partial \Omega(t+\varepsilon). \end{cases} \quad \begin{cases} -\Delta \boldsymbol{p} = \mu'(t) & \text{in } \Omega(t), \\ -\partial_n \boldsymbol{p} = H\boldsymbol{p} & \text{on } \partial \Omega(t). \end{cases}$$

•
$$\mu(t)=(\omega-\|
u\|)\delta_0+t
u$$
, $\Omega(0)=$ a ball.

- $\Omega(1)$ is a solution with $u := \int_0^1 p(x,s) \, ds + u(x,0)$.
- Solvability of the flow (O. 2014):

Linearized operator generates analytic semigroup in $h^{l+\alpha}$.

• Characterization of invariant manifolds:

Global-in-time solvability for $\tilde{\nu} + t\delta_0$ and $\Omega(0) \sim$ a ball, Infinitely many conserved quantities (harmonic moments).

2 Uniqueness: Maximum principle applied to $u - \tilde{u}$ where \tilde{u} is a super or subsolution to ODP for $\tilde{\Omega}$ with $\tilde{\Omega} \supset \Omega$ or $\tilde{\Omega} \subset \Omega$. The construction of such \tilde{u} and $\tilde{\Omega}$ relies on the global-in-time solvability of the flow.

Main result Outline of proof

Outline of proof: Uniqueness

Let us denote by Ω_* the domain we constructed, and assume that there is another different domain Ω satisfying GMVF, i.e.,

$$\left\{ \begin{array}{ll} -\Delta u_* = \mu & \text{ in } \Omega_*, \\ u_* = 0 & \text{ on } \partial \Omega_*, \\ \partial_n u_* = -1 & \text{ on } \partial \Omega_*, \end{array} \right. \quad \left\{ \begin{array}{ll} -\Delta u = \mu & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega, \\ \partial_n u = -1 & \text{ on } \partial \Omega. \end{array} \right.$$

Main result Outline of proof

Outline of proof: Uniqueness

Let us denote by Ω_* the domain we constructed, and assume that there is another different domain Ω satisfying GMVF, i.e.,

$$\left\{ egin{array}{ll} -\Delta u_* = \mu & ext{in } \Omega_*, \ u_* = 0 & ext{on } \partial \Omega_*, \ \partial_n u_* = -1 & ext{on } \partial \Omega_*, \end{array}
ight.$$
 and $\left\{ egin{array}{ll} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ \partial_n u = -1 & ext{on } \partial \Omega. \end{array}
ight.$

Moreover, by construction, $\Omega_* \sim \mathbb{B}$ and $u_* > 0$ in Ω_* .

Main result Outline of proof

Outline of proof: Uniqueness

Let us denote by Ω_* the domain we constructed, and assume that there is another different domain Ω satisfying GMVF, i.e.,

$$\left\{egin{array}{ll} -\Delta u_* = \mu & ext{in } \Omega_*, \ u_* = 0 & ext{on } \partial \Omega_*, \ \partial_n u_* = -1 & ext{on } \partial \Omega_*, \end{array}
ight.$$
 and $\left\{egin{array}{ll} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ \partial_n u = -1 & ext{on } \partial \Omega. \end{array}
ight.$

Moreover, by construction, $\Omega_* \sim \mathbb{B}$ and $u_* > 0$ in Ω_* .

• $\Omega \subset \Omega_*$ holds.

Main result Outline of proof

Outline of proof: Uniqueness

Let us denote by Ω_* the domain we constructed, and assume that there is another different domain Ω satisfying GMVF, i.e.,

$$\left\{egin{array}{ll} -\Delta u_* = \mu & ext{in } \Omega_*, \ u_* = 0 & ext{on } \partial \Omega_*, \ \partial_n u_* = -1 & ext{on } \partial \Omega_*, \end{array}
ight.$$
 and $\left\{egin{array}{ll} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ \partial_n u = -1 & ext{on } \partial \Omega. \end{array}
ight.$

Moreover, by construction, $\Omega_* \sim \mathbb{B}$ and $u_* > 0$ in Ω_* .

• $\Omega \subset \Omega_*$ holds. Otherwise, by using the flow for the initial domain $\Omega(0) = \Omega_*$, we obtain $\Omega(t_*), t_* > 0$, satisfying $\Omega \subset \Omega(t_*), \partial\Omega \cap \partial\Omega(t_*) \neq \emptyset$ and

$$\begin{array}{l} \text{the solvability of} \left\{ \begin{array}{ll} -\Delta v = \mu + t_* \delta_0 & \text{in } \Omega(t_*), \\ v = 0 & \text{on } \partial \Omega(t_*), \\ \partial_n v = -1 & \text{on } \partial \Omega(t_*). \end{array} \right. \end{array} \right. \\ \end{array}$$

Main result Outline of proof

Outline of proof: Uniqueness

Let us denote by Ω_* the domain we constructed, and assume that there is another different domain Ω satisfying GMVF, i.e.,

$$egin{pmatrix} -\Delta u_* = \mu & ext{in } \Omega_*, \ u_* = 0 & ext{on } \partial \Omega_*, \ \partial_n u_* = -1 & ext{on } \partial \Omega_*, \ \end{pmatrix}$$
 and $egin{pmatrix} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ \partial_n u = -1 & ext{on } \partial \Omega. \ \end{pmatrix}$

Moreover, by construction, $\Omega_* \sim \mathbb{B}$ and $u_* > 0$ in Ω_* .

• $\Omega \subset \Omega_*$ holds. Otherwise, by using the flow for the initial domain $\Omega(0) = \Omega_*$, we obtain $\Omega(t_*), t_* > 0$, satisfying $\Omega \subset \Omega(t_*), \partial\Omega \cap \partial\Omega(t_*) \neq \emptyset$ and

the solvability of
$$\begin{cases} -\Delta v = \mu + t_* \delta_0 & \text{in } \Omega(t_*), \\ v = 0 & \text{on } \partial \Omega(t_*), & \text{with } v > 0 \text{ in } \Omega(t_*). \\ \partial_n v = -1 & \text{on } \partial \Omega(t_*). \end{cases}$$

Hence, w := u - v is subharmonic in Ω and $w \leq 0$ on $\partial \Omega$.

Main result Outline of proof

Outline of proof: Uniqueness

Let us denote by Ω_* the domain we constructed, and assume that there is another different domain Ω satisfying GMVF, i.e.,

$$egin{pmatrix} -\Delta u_* = \mu & ext{in } \Omega_*, \ u_* = 0 & ext{on } \partial \Omega_*, \ \partial_n u_* = -1 & ext{on } \partial \Omega_*, \ \end{pmatrix}$$
 and $egin{pmatrix} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ \partial_n u = -1 & ext{on } \partial \Omega. \ \end{pmatrix}$

Moreover, by construction, $\Omega_* \sim \mathbb{B}$ and $u_* > 0$ in Ω_* .

• $\Omega \subset \Omega_*$ holds. Otherwise, by using the flow for the initial domain $\Omega(0) = \Omega_*$, we obtain $\Omega(t_*), t_* > 0$, satisfying $\Omega \subset \Omega(t_*), \partial\Omega \cap \partial\Omega(t_*) \neq \emptyset$ and

the solvability of
$$\begin{cases} -\Delta v = \mu + t_* \delta_0 & \text{in } \Omega(t_*), \\ v = 0 & \text{on } \partial \Omega(t_*), & \text{with } v > 0 \text{ in } \Omega(t_*). \\ \partial_n v = -1 & \text{on } \partial \Omega(t_*). \end{cases}$$

Hence, w := u - v is subharmonic in Ω and $w \leq 0$ on $\partial \Omega$. By Hopf's lemma,

 $0 < \partial_n w(x)$ for $x \in \partial \Omega \cap \partial \Omega(t_*),$

Main result Outline of proof

Outline of proof: Uniqueness

Let us denote by Ω_* the domain we constructed, and assume that there is another different domain Ω satisfying GMVF, i.e.,

$$egin{pmatrix} -\Delta u_* = \mu & ext{in } \Omega_*, \ u_* = 0 & ext{on } \partial \Omega_*, \ \partial_n u_* = -1 & ext{on } \partial \Omega_*, \ \end{pmatrix}$$
 and $egin{pmatrix} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ \partial_n u = -1 & ext{on } \partial \Omega. \ \end{pmatrix}$

Moreover, by construction, $\Omega_* \sim \mathbb{B}$ and $u_* > 0$ in Ω_* .

• $\Omega \subset \Omega_*$ holds. Otherwise, by using the flow for the initial domain $\Omega(0) = \Omega_*$, we obtain $\Omega(t_*), t_* > 0$, satisfying $\Omega \subset \Omega(t_*), \partial\Omega \cap \partial\Omega(t_*) \neq \emptyset$ and

the solvability of
$$\begin{cases} -\Delta v = \mu + t_* \delta_0 & \text{in } \Omega(t_*), \\ v = 0 & \text{on } \partial \Omega(t_*), & \text{with } v > 0 \text{ in } \Omega(t_*). \\ \partial_n v = -1 & \text{on } \partial \Omega(t_*). \end{cases}$$

Hence, w := u - v is subharmonic in Ω and $w \leq 0$ on $\partial \Omega$. By Hopf's lemma,

$$0 < \partial_n w(x) = \partial_n u(x) - \partial_n v(x) = 0$$

for $x \in \partial \Omega \cap \partial \Omega(t_*)$, a contradiction.

Main result Outline of proof

Outline of proof: Uniqueness

Let us denote by Ω_* the domain we constructed, and assume that there is another different domain Ω satisfying GMVF, i.e.,

$$egin{pmatrix} -\Delta u_* = \mu & ext{in } \Omega_*, \ u_* = 0 & ext{on } \partial \Omega_*, \ \partial_n u_* = -1 & ext{on } \partial \Omega_*, \ \end{pmatrix}$$
 and $egin{pmatrix} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ \partial_n u = -1 & ext{on } \partial \Omega. \ \end{pmatrix}$

Moreover, by construction, $\Omega_* \sim \mathbb{B}$ and $u_* > 0$ in Ω_* .

• $\Omega \subset \Omega_*$ holds. Otherwise, by using the flow for the initial domain $\Omega(0) = \Omega_*$, we obtain $\Omega(t_*), t_* > 0$, satisfying $\Omega \subset \Omega(t_*), \partial\Omega \cap \partial\Omega(t_*) \neq \emptyset$ and

the solvability of
$$\begin{cases} -\Delta v = \mu + t_* \delta_0 & \text{in } \Omega(t_*), \\ v = 0 & \text{on } \partial \Omega(t_*), & \text{with } v > 0 \text{ in } \Omega(t_*). \\ \partial_n v = -1 & \text{on } \partial \Omega(t_*). \end{cases}$$

Hence, w := u - v is subharmonic in Ω and $w \leq 0$ on $\partial \Omega$. By Hopf's lemma,

$$0 < \partial_n w(x) = \partial_n u(x) - \partial_n v(x) = 0$$

for $x\in\partial\Omega\cap\partial\Omega(t_*)$, a contradiction.

• A comparison argument yields $B(0,1-arepsilon)\subset \Omega\subset \Omega_*$ with $arepsilon\ll 1$.

Outline of proof: Uniqueness

Let us denote by Ω_* the domain we constructed, and assume that there is another different domain Ω satisfying GMVF, i.e.,

$$egin{pmatrix} -\Delta u_* = \mu & ext{in } \Omega_*, \ u_* = 0 & ext{on } \partial \Omega_*, \ \partial_n u_* = -1 & ext{on } \partial \Omega_*, \ \end{pmatrix}$$
 and $egin{pmatrix} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ \partial_n u = -1 & ext{on } \partial \Omega. \ \end{pmatrix}$

Moreover, by construction, $\Omega_* \sim \mathbb{B}$ and $u_* > 0$ in Ω_* .

• $\Omega \subset \Omega_*$ holds. Otherwise, by using the flow for the initial domain $\Omega(0) = \Omega_*$, we obtain $\Omega(t_*), t_* > 0$, satisfying $\Omega \subset \Omega(t_*), \partial\Omega \cap \partial\Omega(t_*) \neq \emptyset$ and

the solvability of
$$\begin{cases} -\Delta v = \mu + t_* \delta_0 & \text{in } \Omega(t_*), \\ v = 0 & \text{on } \partial \Omega(t_*), & \text{with } v > 0 \text{ in } \Omega(t_*). \\ \partial_n v = -1 & \text{on } \partial \Omega(t_*). \end{cases}$$

Hence, w := u - v is subharmonic in Ω and $w \leq 0$ on $\partial \Omega$. By Hopf's lemma,

$$0 < \partial_n w(x) = \partial_n u(x) - \partial_n v(x) = 0$$

for $x\in\partial\Omega\cap\partial\Omega(t_*)$, a contradiction.

- A comparison argument yields $B(0,1-arepsilon)\subset \Omega\subset \Omega_*$ with $arepsilon\ll 1$.
- Now $\Omega \supset \Omega_*$ follows from a similar (but a little more involved) argument with $\Omega(0) = B(0, 1 \varepsilon)$.

Summary

Flow characterization of mean value formulas

• Continuous family of domains admitting mean value formulas is shown to form a flow described by an evolution equation.

Uniqueness and stability of mean value formula

- Uniqueness and stability hold under small perturbation of measure.
- Higher symmetry of μ implies stronger stability of mean value formula.

Summary

Flow characterization of mean value formulas

• Continuous family of domains admitting mean value formulas is shown to form a flow described by an evolution equation.

Uniqueness and stability of mean value formula

- Uniqueness and stability hold under small perturbation of measure.
- Higher symmetry of μ implies stronger stability of mean value formula.

Final remark

The result holds for the general mean value formula

$$\int h\,d\mu = \int_\Omega hf\,dx + \int_{\partial\Omega} hg\,d\sigma \quad ext{with } f,g ext{ satisfying a scale law.}$$

Summary

Flow characterization of mean value formulas

• Continuous family of domains admitting mean value formulas is shown to form a flow described by an evolution equation.

Uniqueness and stability of mean value formula

- Uniqueness and stability hold under small perturbation of measure.
- Higher symmetry of μ implies stronger stability of mean value formula.

Final remark

The result holds for the general mean value formula

 $\int h\,d\mu = \int_\Omega hf\,dx + \int_{\partial\Omega} hg\,d\sigma \quad ext{with } f,g ext{ satisfying a scale law.}$