	Ed-evolution families		Qc extensions for Ld-Loewner chains
0	00000	000	00000000

$\mathbf{L}^{d}\text{-}\mathsf{Loewner}$ chains with quasiconformal extensions

Ikkei HOTTA

Tokyo Institute of Technology (Japan)

Nov. 23, 2014 @ International Workshop on Conformal Dynamics and Loewner Theory

• Radial Loewner equations for $\varphi_{s,t} = f_t^{-1} \circ f_s$:

$$\dot{w}_t = G(w_t, t)$$
 with $G(z, t) := -zp(z, t)$

• Chordal Loewner equations (by transforming everything from \mathbb{H}^+ to \mathbb{D}):

$$\dot{w}_t = G(w_t, t)$$
 with $G(z, t) := (1 - z)^2 p(z, t)$

• Berkson-Porta representation for semigroups $\{\phi_t\} \subset Hol(\mathbb{D})$:

$$\dot{w_t} = G(w_t)$$
 with $G(z) := (z - \tau)(\bar{\tau}z - 1)p(z)$

 \implies Unified treatment of the above differential equations!!

	Ed-evolution families		Qc extensions for Ld-Loewner chains
	00000	000	00000000
Evolution f	amily of order d		

Definition 7.1

A family of holomorphic self-maps of the unit disk $(\varphi_{s,t})_{0 \leq s \leq t < \infty}$, is an evolution family of order d with $d \in [1, \infty]$, or in short an L^d -evolution family, if

- $\textbf{2} \ \varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u} \text{ for all } 0 \leq s \leq u \leq t < \infty,$
- (3) for all $z \in \mathbb{D}$ and for all T > 0 there exists a non-negative function $k_{z,T} \in L^d([0,T],\mathbb{R})$ such that

$$|\varphi_{s,u}(z) - \varphi_{s,t}(z)| \le \int_u^t k_{z,T}(\zeta) d\zeta$$

for all $0 \le s \le u \le t \le T$.

• We denote the family of all evolution families of order d by EF^d .

Introduction	Ed-evolution families	Ld-Loewner chains	Qc extensions for Ld-Loewner chains
	0000	000	00000000
Herglotz ve	$rac{1}{2}$		

Definition 7.3

A weak holomorphic vector field of order $d \in [1, \infty]$ on \mathbb{D} is a function $G : \mathbb{D} \times [0, \infty) \to \mathbb{C}$ with the following properties:

- **()** For all $z_0 \in \mathbb{D}$, the function $G(z_0, t)$ is measurable on $t \in [0, \infty)$,
- **2** For all $t_0 \in [0,\infty)$, the function $G(z,t_0)$ is holomorphic on \mathbb{D} ,
- (a) For any compact set $K \subset \mathbb{D}$ and for all T > 0, there exists a non-negative function $k_{K,T} \in L^d([0,T],\mathbb{R})$ such that

$$|G(z,t)| \le k_{K,T}(t) \tag{1}$$

for all $z \in K$ and for almost every $t \in [0, T]$.

Furthermore, G is said to be a <u>Herglotz vector field of order d</u> if $G(\cdot, t)$ is the infinitesimal generator of a semigroup of holomorphic functions for almost all $t \in [0, \infty)$.

• HV^d: a family of all Herglotz vector field of order d

	Ed-evolution families		Qc extensions for Ld-Loewner chains
0	00000	000	00000000

Theorem 7.5

Let $d \in [1,\infty]$ be fixed. Then, for any $\varphi_{s,t} \in EF^d$, there exists an essentially unique $G \in HV^d$ such that

$$\dot{\varphi}_{s,t}(z) = G(\varphi_{s,t}(z), t) \tag{2}$$

for all $z \in \mathbb{D}$ and almost all $t \in [0, \infty)$, where $\dot{\varphi}_{s,t} := \partial \varphi_{s,t} / \partial t$. Conversely, for any $G \in \mathrm{HV}^d$, a unique solution of (2) with the initial condition $\varphi_{s,s}(z) = z$ is an evolution family of order d.

It determines one-to-one correspondence between $(\varphi_{s,t}) \in EF^d$ and $G \in HV^d$.

Introduction O	Ed-evolution families ○○○●○	Ld-Loewner chains 000	Qc extensions for Ld-Loewner chains 000000000
Definition	7.6		

A Herglotz function of order $d \in [1, \infty]$ on the unit disk \mathbb{D} is a function $p: \mathbb{D} \times [0, \infty) \to \mathbb{C}$ with the following properties:

- **④** For all $z_0 \in \mathbb{D}$, the function $p(z_0, t)$ belongs to $L^d_{\text{loc}}([0, \infty), \mathbb{C})$ on $t \in [0, \infty)$,
- **②** For all $t_0 \in [0,\infty)$, the function $p(z,t_0)$ is holomorphic on \mathbb{D} ,
- 3 Re $p(z,t) \ge 0$ for all $z \in \mathbb{D}$ and $t \in [0,\infty)$.

Then, HF^d denotes the family of all Herglotz functions of order d.

Theorem 7.8

Let $G \in \mathrm{HV}^d$. Then there exist an essentially unique $p \in \mathrm{HF}^d$ and a measurable function $\tau : [0, \infty) \to \overline{\mathbb{D}}$ s.t.,

$$G(z,t) = (z - \tau(t))(\overline{\tau(t)}z - 1)p(z,t).$$
(3)

for all $z \in \mathbb{D}$ and almost all $t \in [0, \infty)$. Conversely, for a given $p \in \mathrm{HF}^d$ and a measurable function $\tau : [0, \infty) \to \overline{\mathbb{D}}$, the equation (3) determines an essentially unique $G \in \mathrm{HV}^d$.

	Ed-evolution families		Qc extensions for Ld-Loewner chains
0	00000	000	00000000

(essentially) 1-to-1 correspondence between;

$$(\boldsymbol{\varphi}_{s,t}) \in \mathrm{EF}^d \qquad \stackrel{\mathrm{(A)}}{\longleftrightarrow} \qquad \overrightarrow{G \in \mathrm{HV}^d} \qquad \stackrel{\mathrm{(B)}}{\longleftrightarrow} \qquad \boxed{(p,\tau) \in \mathrm{BP}}$$

(A): $\dot{arphi}_{s,t}(z)=G(arphi_{s,t}(z),t)$ with the initial condition $arphi_{s,s}(z)=z$

$$(B): \quad G(z,t) = (z - \tau(t))(\overline{\tau(t)}z - 1)p(z,t)$$

Introduction	Ed-evolution families	Ld-Loewner chains	Qc extensions for Ld-Loewner chains
0			
Loewner cha	ains of order d		

Definition 7.9

A family of holomorphic maps of the unit disk $(f_t)_{t\geq 0}$ is called a <u>Loewner</u> <u>chain of order d</u> with $d \in [1, \infty]$, or in short an <u>L</u>^d-Loewner chain, if

- $(a) f_s(\mathbb{D}) \subset f_t(\mathbb{D}) \text{ for all } 0 \leq s < t < \infty,$
- (a) for any compact set $K \subset \mathbb{D}$ and all T > 0, there exists a non-negative function $k_{K,T} \in L^d([0,T],\mathbb{R})$ such that

$$|f_s(z) - f_t(z)| \le \int_s^t k_{K,T}(\zeta) d\zeta$$

for all $z \in \mathcal{K}$ and all $0 \le s \le t \le T$.

 LC^d : a family of all Loewner chains of order d

- There exist $(f_t) \in LC^d$ s.t. $\Omega[(f_t)] := \bigcup_{t \ge 0} f_t(\mathbb{D}) \neq \mathbb{C}$. In fact $f_s(\mathbb{D})$ is allowed to be equal to $f_t(\mathbb{D})$ for some s < t (even for all s < t)
- For any compact subset $K \in \mathbb{D}$, there exists $(f_t) \in LC^d$ s.t. $f_s(K) \not\subset f_t(K)$ for some s < t,

	Ed-evolution families	Ld-Loewner chains	Qc extensions for Ld-Loewner chains
0	00000	000	00000000

Theorem 7.10

For any $(f_t) \in LC^d$, if we define

Evolution families and Loewner chains

$$\varphi_{s,t}(z) := (f_t^{-1} \circ f_s)(z) \qquad (z \in \mathbb{D}, \ 0 \le s \le t < \infty)$$

then $(\varphi_{s,t}) \in EF^d$. Conversely, for any $(\varphi_{s,t}) \in EF^d$, there exists a $(f_t) \in LC^d$ such that the following equality holds

$$(f_t \circ \varphi_{s,t})(z) = f_s(z) \qquad (z \in \mathbb{D}, \ 0 \le s \le t < \infty).$$

We can deduce that a Loewner chain of order \boldsymbol{d} satisfies the differential equation

$$\dot{f}_t(z) = f'_t(z)(z - \tau(t))(1 - \overline{\tau(t)}z)p(z, t),$$

where $\tau: [0,\infty) \to \overline{\mathbb{D}}$ is a measurable function and $p \in \mathrm{HF}^d$.

	Ed-evolution families	Ld-Loewner chains	Qc extensions for Ld-Loewner chains
0	00000	000	00000000

 $\mathcal{L}[(\varphi_{s,t})]$: a family of $(f_t) \in LC^d$ associated with $(\varphi_{s,t}) \in EF^d$ satisfying $f_0 \in S$

Theorem 7.11

Let $(\varphi_{s,t}) \in EF^d$. Then there exists a unique $(f_t) \in \mathcal{L}[(\varphi_{s,t})]$ such that $\Omega[(f_t)]$ is \mathbb{C} or an Euclidean disk in \mathbb{C} whose center is the origin. Furthermore;

- The following 4 statements are equivalent;

 - 2 $\mathcal{L}[(\varphi_{s,t})]$ consists of only one function,
 - (a) $\beta(z) = 0$ for all $z \in \mathbb{D}$, where

$$\beta(z) := \lim_{t \to +\infty} \frac{|\varphi'_{0,t}(z)|}{1 - |\varphi_{0,t}(z)|^2},$$

(4) there exists at least one point $z_0 \in \mathbb{D}$ such that $\beta(z_0) = 0$.

• On the other hand, if $\Omega[(f_t)] \neq \mathbb{C}$, then the Euclidean disk is written by

$$\Omega[(f_t)] = \left\{ w : |w| < \frac{1}{\beta(0)} \right\}$$

and the other $(g_t) \in \mathcal{L}[(\varphi_{s,t})]$ has an expression

$$g_t(z) = \frac{h(\beta(0)f_t(z))}{\beta(0)} \quad (h \in \mathcal{S}).$$

	Ed-evolution families		Qc extensions for Ld-Loewner chains
	00000	000	0000000
Qc extension for classic	al Loewner chains		
Quasiconfo	rmal extensions for L	d-Loewner chains	

In 1972, Becker applied for Loewner's method to derive a quasiconformal extension criterion.

Theorem (Becker 1972)

Let $k \in [0, 1)$ be a constant. Suppose that (f_t) is a (classical) radial Loewner chain for which the Herglotz function p in the Loewner PDE satisfies

$$p(z,t) \in \underline{\underline{U}(k)} := \left\{ w \in \mathbb{C} : \left| \frac{w-1}{w+1} \right| \le k \right\} \subsetneq \mathbb{H}$$

for all $z \in \mathbb{D}$ and almost all $t \ge 0$. Then the function F defined by

$$F(z) := \begin{cases} f_0(z), & z \in \mathbb{D}, \\ f_{\log|z|}\left(\frac{z}{|z|}\right), & z \in \mathbb{C} \setminus \overline{\mathbb{D}}, \end{cases}$$

is a k-quasiconformal mapping of \mathbb{C} .

	Ed-evolution families		Qc extensions for Ld-Loewner chains
0	00000	000	00000000
Main waardt			

Theorem (H. 2014)

all

resuit

Let $d \in [1,\infty)$ and $k \in [0,1)$. Let $(f_t) \in LC^d$ and $p \in HF^d$ associated with (f_t) . If p satisfies $p(z,t) \in U(k)$ for all $z \in \mathbb{D}$ and almost all $t \in [0,\infty)$, then

(1) f_t has a k-quasiconformal extension to $\widehat{\mathbb{C}}$ for each $t \in [0, \infty)$.

In this theorem, any superfluous assumption is not imposed on τ .

			Qc extensions for Ld-Loewner chains
0	00000	000	00000000

Theorem (Gumenyuk and H, 2014)

Let $d \in [1, \infty)$ and $k \in [0, 1)$. Let $(f_t) \in LC^d$ and $p \in HF^d$ associated with (f_t) . If $\tau \in \overline{\mathbb{D}}$ is constant and p satisfies

 $p(z,t) \in U(k)$

for all $z \in \mathbb{D}$ and almost all $t \in [0, \infty)$, then f_t has a k-quasiconformal extension to $\widehat{\mathbb{C}}$ for each $t \in [0, \infty)$.

Then we can also prove it for the case when au is of the form

$$\tau(t) = \sum_{i=1}^{n} \tau_i \cdot \chi_{I_i}(t),$$

where $\tau_i \in \overline{\mathbb{D}}, n \in \mathbb{N}, 0 = t_0 < t_1 < \cdots < t_{n-1} < t_n = \infty$, $I_i := [t_{i-1}, t_i)$ and χ_I is a characteristic function.

	Ed-evolution families		Qc extensions for Ld-Loewner chains
0	00000	000	00000000

Theorem (H. 2014, Roth 1997)

Let $G \in HV^d$. Consider the family $\{G(z,t)\}$ such that

() $\{G(\cdot,t)\}$ forms a normal family for almost every fixed $t \in [0,\infty)$.

2 $\{G_n(z,t)\}_{n\in\mathbb{N}}\subset \{G(z,t)\}$ is a sequence converging weakly to $G\in \mathbb{HV}^d$

Then, a sequence of evolution families $\{(\varphi_{s,t}^n)\}_n$ of order d associated with $\{G_n\}_n$ converges locally uniformly to $(\varphi_{s,t})$ associated with G on $(z,t) \in \mathbb{D} \times [s,\infty)$.

Proposition (Gumenyuk and H, 2014)

Let $(f_t) \in LC^d$. Let $p \in HF^d$ and τ be a measurable function associated with (f_t) . Suppose that $\underline{\tau \in \overline{\mathbb{D}}}$ is a constant, and there exist uniform constants $C_1, C_2 > 0$ such that

 $C_1 < \operatorname{\mathsf{Re}} p(z,t) < C_2$

for all $z \in \mathbb{D}$ and almost all $t \in [0, \infty)$. Then $\Omega[(f_t)] = \mathbb{C}$.

Ed-evolution families		Qc extensions for Ld-Loewner chains
00000	000	00000000

Definition

A family $\{g_t\}_{t\geq 0}$ of holomorphic maps of the unit disk is called a <u>decreasing Loewner chain of order d</u> with $d \in [1,\infty]$ if it satisfies the following conditions:

- **(1)** g_t is univalent on \mathbb{D} for each $t \in [0, \infty)$,
- $\textbf{2} \ g_0(z) = z \text{ and } g_s(\mathbb{D}) \supset g_t(\mathbb{D}) \text{ for all } 0 \leq s < t < \infty,$
- (a) for any compact set $K \subset \mathbb{D}$ and all T > 0, there exists a non-negative function $k_{K,T} \in L^d([0,T],\mathbb{R})$ such that

$$|g_s(z) - g_t(z)| \le \int_s^t k_{K,T}(\zeta) d\zeta$$
(4)

for all $z \in \mathcal{K}$ and all $0 \le s \le t \le T$.

• We denoted by DLC^d a family of all decreasing Loewner chain of order d.

•
$$\partial_t g_t(z) = (z - \sigma(t))(\overline{\sigma(t)}z - 1)\partial_z g_t(z)q(z,t)$$

• $\Lambda[(g_t)] := \bigcap_{t>0} \overline{g_t(\mathbb{D})}$

			Qc extensions for Ld-Loewner chains
0	00000	000	00000000

Definition

Let $d \in [1, \infty]$. A family $\{\omega_{s,t}\}_{0 \le s \le t}$ of holomorphic self-maps of the unit disk \mathbb{D} is called a <u>reverse evolution family of order d</u> with $d \in [1, \infty]$ (or in short, an L^d -reverse evolution families) if the following conditions are fulfilled:

2
$$\omega_{s,t} = \omega_{s,u} \circ \omega_{u,t}$$
 for all $0 \le s \le u \le t < \infty$,

(3) for all $z_0 \in \mathbb{D}$ and for all $T_0 > 0$ there exists a non-negative function $k_{z_0,T_0} \in L^d([0,T_0],\mathbb{R})$ such that

$$|\omega_{s,u}(z_0) - \omega_{s,t}(z_0)| \le \int_u^t k_{z_0,T_0}(\zeta) d\zeta$$

for all $0 \le s \le u \le t \le T_0$.

• REF^d : a family of all reverse evolution family of order d.

Ed-evolution families		Qc extensions for Ld-Loewner chains
00000	000	000000000

Theorem (H, 2014)

Let $d \in [1, \infty]$ and $k \in [0, 1)$. Let $(f_t) \in LC^d$ and $(p, \tau) \in BP$ associated with (f_t) . We denote by $T^* \in [0, \infty]$ the smallest number such that $p(\mathbb{D}, t) \in i\mathbb{R}$ for almost all $t \in (T^*, \infty)$. Suppose that $T^* \neq 0$ and $p \in \mathrm{HF}^d$ satisfies

$$|p(z,t) - \overline{q(z,t)}| \le k \cdot |p(z,t) + q(z,t)|$$
(5)

for all $z \in \mathbb{D}$ and almost all $t \in [0, \infty)$, where $q \in \mathrm{HF}^d$. Let $(\omega_{s,t}) \in \mathrm{REF}^d$ associated with $(q, \tau) \in \mathrm{BP}$ and $(g_t) \in \mathrm{DLC}^d$ associate with $(\omega_{s,t})$. Then, f_t and g_t has continuous extensions to $\overline{\mathbb{D}}$ for each $t \in [0, T^*)$, and Φ defined by

$$\begin{cases} \Phi(z) = f_0(z), & z \in \mathbb{D}, \\ \Phi\left(\frac{1}{\overline{g_t(e^{i\theta})}}\right) = f_t(e^{i\theta}), \quad \theta \in [0, 2\pi) \quad \text{and} \quad t \in [0, T^*), \end{cases}$$
(6)

is a k-quasiconformal mapping on $\Delta[(g_t)]$ onto $\Omega[(f_t)]$.

•
$$\Delta[(g_t)] := \left\{ \frac{1}{\overline{w}} : w \in \widehat{\mathbb{C}} \setminus \Lambda[(g_t)] \right\}$$

	Ed-evolution families		Qc extensions for Ld-Loewner chains
0	00000	000	00000000

Theorem (H, 2014)

Let $d \in [1,\infty)$ and $k \in [0,1)$. Let $(g_t) \in \text{DLC}^d$ and $(q,\tau) \in \text{BP}$ associated with (g_t) . If q satisfies

$$\left|\frac{q(z,t)-1}{q(z,t)+1}\right| \le k$$

for all $z \in \mathbb{D}$ and almost all $t \in [0, \infty)$, then g_t has a k-quasiconformal extension to $\widehat{\mathbb{C}}$ for each $t \in [0, \infty)$. Further, $\Lambda[(g_t)]$ consists of one point in $\overline{\mathbb{D}}$.

Ed-evolution families		Qc extensions for Ld-Loewner chains
00000	000	00000000

Thank you for your attention!!