Conformal maps	Radial slit case	Pommerenke's generalization	chordal slit case	Semigroups	Applications
000000	00	000	000	000	000

Introduction to Loewner Theory

Ikkei HOTTA

Tokyo Institute of Technology (Japan)

Nov. 22, 2014 @ International Workshop on Conformal Dynamics and Loewner Theory

Conformal maps	Radial slit case	Pommerenke's generalization			Applications
00000	00	000	000	000	000
Conformal ı	naps				

Theorem (The Riemann mapping theorem)

Let $\Omega \subset \mathbb{C}$ be a simply connected proper subdomain. Then there is a conformal surjection $f: \mathbb{D} \to \Omega$. Moreover, if g is another such mapping, then $g^{-1} \circ f: \mathbb{D} \to \mathbb{D}$ is a linear fractional transformation. In particular, given $z_0 \ in\Omega$, there exists a unique conformal mapping $f: \mathbb{D} \to \Omega$ with f(0) = 0 and f'(0) > 0.

Geometry:

{hyperbolic simply-connected domains on $\mathbb{C}\}/\{\text{rotation, expansion, reduction}\}$ Analysis:

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
00000	00	000	000	000	000

Definition (Class S)

By \mathcal{S} we denote the family of all holomorphic univalent functions $f:\mathbb{D}\to\mathbb{C},$

$$f(z) := z + \sum_{n=2}^{\infty} a_n z^n \ (f(0) = 0, \ f'(0) = 1).$$

Theorem

 $\mathcal S$ is compact in the topology of locally uniform convergence.

Theorem (The Bieberbach conjecture)

For all $f(z) := z + \sum_{n=2}^{\infty} a_n z^n$ belongs to S, we have

$$|a_n| \le n \qquad (n \ge 2).$$

Equality holds iff f is the koebe function

$$K(z) := \frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + \cdots$$

and its rotation $e^{i^{\theta}}K(ze^{-i\theta}), 0 \leq \theta < 2\pi$.

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
000000	00	000	000	000	000

The kernel convergence

Definition (Carathéodory kernel)

- $a \in \mathbb{C}$: a point
- $\{U_n\} \ni a$: a sequence of domains on \mathbb{C} .

- V_n : a connected component of the interior of $U_n \cap U_{n+1} \cap \cdots$ in which a is contained

 $\Rightarrow U := \bigcup_{n}^{\infty} V_{n} \neq \emptyset \text{ is called the } \underline{\textbf{Carathéodory kernel}} \text{ of } \{U_{n}\} \text{ w.r.t. } a.$ $\Rightarrow \text{ If } U \text{ is empty, then we employ } \overline{\{a\}} \text{ as the Carathéodory kernel.}$

Conformal maps ○○○○●○	Radial slit case 00	Pommerenke's generalization 000	chordal slit case 000	Semigroups 000	Applications 000
			$:= \mathbb{C} \setminus \{ \text{slit} \}$	- ∞	
		$ \qquad \qquad n \to \infty $			

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
000000	00	000	000	000	000

The kernel convergence

Definition (Carathéodory kernel)

- $a \in \mathbb{C}$: a point
- $\{U_n\} \ni a$: a sequence of domains on \mathbb{C} .
- V_n : a connected component of $U_n \cap U_{n+1} \cap \cdots$ in which a is contained

 $\Rightarrow U := \bigcup_{n}^{\infty} V_{n} \neq \emptyset \text{ is called the } \underline{\textbf{Carathéodory kernel}} \text{ of } \{U_{n}\} \text{ w.r.t. } a.$ $\Rightarrow \text{ If } U \text{ is empty, then we employ } \overline{\{a\}} \text{ as the Carathéodory kernel.}$

Theorem

Let $\{f_n\}$ be a sequence of conformal maps \mathbb{D} with $f_n(0) = a$ and $f'_n(0) > 0$. Then f_n converges on \mathbb{D} locally uniformly to f iff $U_n = f_n(\mathbb{D})$ converges to its kernel $U \neq \mathbb{C}$. If the kernel is $\{0\}$, then f = 0. Otherwise f is conformal on \mathbb{D} and $f(\mathbb{D}) = U$.

Theorem

 $\mathcal{S}_{\mathsf{slit}} := \{ f \in \mathcal{S} : f(\mathbb{D}) = \mathbb{C} \backslash \Gamma, \text{ where } \Gamma \subset \mathbb{C} \text{ is a Jordan arc extending to } \infty \}.$ Then

$$\mathcal{S}_{\mathsf{slit}} \overset{\mathsf{dense}}{\subset} \mathcal{S}.$$

Conformal maps 000000	Radial slit case ●○	Pommerenke's generalization	chordal slit case 000	Semigroups 000	Applications 000
Löwner's co	onstruction				

 $\mathcal{S}_{\mathsf{slit}} := \{ f \in \mathcal{S} : f(\mathbb{D}) = \mathbb{C} \backslash \Gamma, \, \mathsf{where} \, \, \Gamma := \gamma[0,\infty) \text{ is a Jordan arc extending to } \infty \}.$

Löwner's Construction

- Take one function $f \in \mathcal{S}_{\mathsf{slit}}$,
- Consider the domain $\Omega_t := \mathbb{C} \setminus \gamma[t,\infty) \ (t \ge 0)$,
- There exists a unique conformal mapping $f_t : \mathbb{D} \to \Omega_t$ such that $f_t(0) = 0$ and $f'_t(0) > 0$ (note that $f_0(z) = f(z)$),
- Reparameterize Γ as $f'_t(0) = e^t$.

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
000000	00	000	000	000	000

Theorem (Löwner, 1923)

() The family (f_t) is of class C^1 with respect to $t \in [0, \infty)$ (even Γ is not smooth).

2 There exists a continuous real function $\lambda : [0,\infty) \to \mathbb{R}$ such that

$$\dot{f}_t(z) = z f'_t(z) \cdot p(z, t) \qquad (z \in \mathbb{D}, t \ge 0), \tag{1}$$

where
$$\dot{f}_t := \partial f_t / \partial t$$
, $f'_t := \partial f_t / \partial z$ and $p(z,t) := \frac{1 + e^{i\lambda(t)}z}{1 - e^{i\lambda(t)}z}$.

- The partial differential equation (1) is called the <u>radial Loewner PDE</u> (of the slit case).
- Comparing the coefficient of z of the both sides, we have the equation

$$a_2(t) = -2e^{2t} \int_t^\infty e^{-u} e^{-i\lambda(u)} du.$$

Hence $|a_2| = 2$.

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
000000	00	000	000	000	000
D	1 1 1				

Pommerenke's generalization

Pommerenke dealt with more general case of that $f_t(\mathbb{D})$ are simply-connected domains.

Definition

Let $f_t(z) = e^t z + \sum_{n=2}^{\infty} a_n(t) z^n$ be a function defined on $\mathbb{D} \times [0, \infty)$. f_t is said to be a (classical) Loewner chain if f_t satisfies the conditions (Fig. 2);

(1) f_t is holomorphic and univalent in \mathbb{D} for each $t \in [0, \infty)$,

 $\ \, \textbf{2} \ \, f_s(\mathbb{D}) \subset f_t(\mathbb{D}) \text{ for all } 0 \leq s < t < \infty.$

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
000000	00	000	000	000	000

Theorem (Pommerenke, 1965)

If $f(z,t) := f_t$ is a Loewner chain, then

- for each $z_0 \in \mathbb{D}$, $f(z_0,\,\cdot\,)$ is absolutely continuous on $t\in [0,\infty)$,
- f_t satisfies

$$\dot{f}_t(z) = f'_t(z) \cdot zp(z,t) \qquad (z \in \mathbb{D}, \text{ a.e. } t \ge 0),$$
(2)

where p(z,t) is a **Herglotz function**, i.e. p satisfies

- **(1)** For all $z_0 \in \mathbb{D}$, the function $p(z_0, \cdot)$ is measurable on $t \in [0, \infty)$,
- 2 For all $t_0 \in [0,\infty)$, the function $p(\cdot,t_0)$ is holomorphic on $z \in \mathbb{D}$,

3 Re $p(z,t) \ge 0$ for all $z \in \mathbb{D}$ and $t \in [0,\infty)$.

Conformal maps 000000	Radial slit case 00	Pommerenke's generalization ○●○	chordal slit case 000	Semigroups 000	Applications 000
Evolution f	amily				

To solve the Loewner differential equation, the notion of evolution families plays a key role.

Definition

A two-parameter family of holomorphic self-maps of the unit disk $(\varphi_{s,t}), 0 \le s \le t < \infty$ is called an **evolution family** if; (1) $\varphi_{s,s}(z) = z$, (2) $\varphi_{s,t}(0) = 0$ and $\varphi'_{s,t}(0) = e^{s-t}$, (3) $\varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u}$ for all $0 \le s \le u \le t < \infty$.

 $f_t^{-1} \circ f_s$ defines an evolution family. Further, since $\dot{f}_t(\varphi_{s,t}) + f_t'(\varphi_{s,t})\dot{\varphi}_{s,t} = 0$ one can obtain

$$\dot{\varphi}_{s,t}(z) = -\varphi_{s,t}(z)p(\varphi_{s,t}(z),t).$$
(3)

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
000000	00	000	000	000	000

Theorem (Pommerenke, 1965)

Suppose that p is the Herglotz function. Then, for each fixed $z_0 \in \mathbb{D}$ and $s_0 \in [0, \infty)$, the initial value problem

$$\begin{cases} \dot{w}_t = -w_t p(w_t, t) & t \in (s_0, \infty) \\ w_{s_0} = z_0 \end{cases}$$

for almost all $t \in [s, \infty)$ has a unique absolutely continuous solution $w_{z_0,s_0}(t)$ with the initial condition $w(s_0) = z_0$. If we write $\varphi_{s,t}(z) := \{w(t)\}_{z \in \mathbb{D}, s \ge 0}$, then $\varphi_{s,t}$ is an evolution family and univalent on \mathbb{D} . Conversely, if f_t is a Loewner chain and $\varphi_{s,t}$ is an evolution family associated

with f_t by $\varphi_{s,t} := f_t^{-1} \circ f_s$. Then for almost all fixed $t \in [s, \infty)$, $\varphi_{s,t}$ satisfies

$$\dot{\varphi}_{s,t}(z) = -\varphi_{s,t}(z)p(\varphi_{s,t}(z),t)$$

for all $z \in \mathbb{D}$.

Further, the function $f_s(z)$ defined by

$$f_s(z) := \lim_{t \to \infty} e^t \varphi_{s,t}(z)$$

exists locally uniformly in $z \in \mathbb{D}$ and is a Loewner chain.

Conformal maps 000000	Radial slit case 00	Pommerenke's generalization 000	chordal slit case ●○○	Semigroups 000	Applications 000
Chordal Lo	ewner Equat	ions			

On the other hand, in 1968 Kufarev, Sobolev, Sporysheva considered the following class ($\mathbb{H}^+ := \{\zeta \in \mathbb{C} : \operatorname{Im} \zeta > 0\}$)

$$\{f: \mathbb{H}^+ \to \mathbb{H}^+, \text{ holomorphic univalent}: f \text{ satisfies } (*)\}$$

where

(*) : Hydrodynamic Normalizations
$$\lim_{\zeta \to \infty} |f(\zeta) - \zeta| = 0$$
,

i.e., f has the following Laurent expansion at ∞ of the form

$$f(\zeta) = \zeta + \frac{b_1(t)}{\zeta} + \sum_{n=2}^{\infty} \frac{b_n(t)}{\zeta^n}.$$

The equation (4) is called <u>chordal Loewner PDE</u>, and the above (f_t) is called a (classical) chordal Loewner chain).

Nov. 22, 15:30 - 16:20 Andrea del Monaco (Univ. Rome "Tor Vergata") Geometry and Loewner Theory
 Conformal maps
 Radial slit case
 Pommerenke's generalization
 Chordal slit case
 Semigroups
 Applications

 000000
 00
 000
 000
 000
 000
 000

Schramm-Loewner Evolution

Consider the inverse map $g := f^{-1}$, then $\dot{g}_t(w) = \frac{2}{g_t(w) - \lambda(t)}$.

Set $\lambda(t) := \sqrt{\kappa} \mathcal{B}_t$, where \mathcal{B}_t is 1-dim Brownian motion and $\kappa > 0$. Then

$$\dot{g}_t(w) = \frac{2}{g_t(w) - \sqrt{\kappa}\mathcal{B}_t}.$$
(5)

The unique solution g_t of (5) is called the **<u>Schramm-Loewner Evolution</u>**.

Nov 23, 13:30 - 14:20 **Hiroyuki Suzuki** (Chuo Univ.) ⇒ Convergence of loop erased random walks on a planar graph to a chordal SLE(2)

Conformal maps	Radial slit case	Pommerenke's generalization	chordal slit case	Semigroups	Applications
Semigroup	of holomorp	hic self-maps of $\mathbb D$			

Let $\mathsf{Hol}(\mathbb{D})$ be a family of all holomorphic self-maps of $\mathbb{D}.$

Definition (The Denjoy-Wolff point)

- By the Schwarz-Pick Lemma, $f \in Hol(\mathbb{D})$ may have at most one fixed point in \mathbb{D} . If such a point exists, then it is called the <u>Denjoy-Wolff point</u> of f.
- If f does not have a fixed point in \mathbb{D} , then the Denjoy-Wolff theorem claims that there exists a unique boundary fixed point $\angle \lim_{z \to \tau} f(z) = \tau \in \partial \mathbb{D}$ such that the sequence of iterates $\{f^n\}_{n \in \mathbb{N}}$ converges to τ locally uniformly. In this case τ is also called the **Denjoy-Wolff point** of f.

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
000000	00	000	000	000	000

A family $\{\phi_t\}_{t\geq 0}$ of holomorphic self-mappings of $\mathbb D$ is called a <u>one-parameter</u> semigroup if

- 2 $\phi_{s+t} = \phi_t \circ \phi_s$ for all $s, t \in [0, \infty)$,
- (a) $\lim_{t\to 0^+} \phi_t(z) = z$ locally uniformly on \mathbb{D} .

For a semigroup ϕ_t , there exists a holomorphic function $G \in Hol(\mathbb{D}, \mathbb{C})$ such that ϕ_t is a unique solution of the Cauchy problem

$$\frac{d\phi_t(z)}{dt} = G(\phi_t(z)) \qquad (t \in [0,\infty))$$
(6)

with the initial condition $\phi_0(z) = z$. The above function G is called the **infinitesimal generator** of the semigroup.

Various criteria which guarantee that a homeomorphic function $G \in Hol(\mathbb{D}, \mathbb{C})$ is the infinitesimal generator are known.

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
000000	00	000	000	000	000

Berkson and Porta (1978)

A holomorphic function $G \in \operatorname{Hol}(\mathbb{D}, \mathbb{C})$ is the infinitesimal generator if and only if there exists a $\tau \in \overline{\mathbb{D}}$ and a function $p \in \operatorname{Hol}(\mathbb{D}, \mathbb{C})$ with $\operatorname{Re} p(z) \geq 0$ for all $z \in \mathbb{D}$ such that

$$G(z) = (\tau - z)(1 - \bar{\tau}z)p(z)$$
(7)

for all $z \in \mathbb{D}$. This equation is called the *Berkson-Porta representation*.

The point τ in (7) is the Denjoy-Wolff point of all the functions of the semigroup.

Nov. 22, 11:40 - 12:30 Santiago Díaz-Madrigal (Univ. Seville) Fixed points in Loewner theory

Nov. 23, 10:00 - 10:50 Pavel Gumenyuk (Univ. Stavanger)
 Loewner-type Parametric Representation of univalent self-maps with given boundary regular fixed points

Conformal maps 000000	Radial slit case OO	Pommerenke's generalization	chordal slit case 000	Semigroups 000	Applications
Application	S				

Quasiconformal Mappings

- f: homeomorphism on G with $f \in W_{loc}^{1,2}$
- $\mu_f := \partial_{\bar{z}} f / \partial_z f$: Beltrami coefficient
- If $||\mu||_{\infty} \leq k$ a.e. on G, then f is called k-quasiconformal on G ($k \in [0, 1)$).

Nov. 22, 14:30 - 15:20 **Toshiyuki Sugawa** (Tohoku Univ.) An application of the Loewner theory to trivial Beltrami coefficients

Theorem (Becker, 1972)

Let f_t be a radial Loewner chain and $k \in [0,1).$ If the herglotz function p associated with f_t satisfies

 $|1-p(z,t)| \le k |1+p(z,t)| \qquad (z \in \mathbb{D}, \text{a.e. } t \in [0,\infty))$

then there exists a k-quasiconformal map F on \mathbb{C} such that $F|_{\mathbb{D}} \equiv f_0$.

Nov. 23, 14:30 - 15:20 **Ikkei Hotta** (Tokyo Tech.) L^d -Loewner chains with quasiconformal extensions

Conformal maps	Radial slit case	Pommerenke's generalization		Semigroups	Applications
000000	00	000	000	000	000
Application	ı				

Hele-Shaw Flows

Find a conformal map f_t on the closed unit disk $\overline{\mathbb{D}}$ satisfying $f_t(0)=0,$ $f_t'(0)>0$ and

$$\mathsf{Re}\,\left\{zf_t'(z)\overline{\dot{f}_t(z)}\right\} = \frac{q(t)}{2\pi} \qquad (|z|=1).$$

By the Poisson-Schwarz formula, it is represented by

$$\dot{f}_t(z) = z f_t'(z) p(z,t) \quad \text{with} \quad p(z,t) := \frac{q(t)}{4\pi^2} \int_0^{2\pi} \frac{1}{|f_t'(e^{i\theta})|} \cdot \frac{1 + z e^{-i\theta}}{1 - z e^{-i\theta}} d\theta$$

Nov. 22, 16:40 - 17:30 Michiaki Onodera (Kyushu Univ.) On a deformation flow for an inverse problem in potential theory

Integrable systems

Chordal Loewner PDE (slit case) \iff dKP hierarchy

Radial Loewner PDE (slit case) \iff dToda hierarchy

Nov. 23, 11:00 - 11:50 **Takashi Takebe** (National Research Univ.) Loewner equations and dispersionless integrable hierarchies

Conformal maps	Radial slit case	Pommerenke's generalization	chordal slit case	Semigroups	Applications
000000	00	000	000	000	000

Thank you for your attention!!