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Chapter 1

Introduction

1.1 Background

We study function theory on compact Levi-flat CR 3-manifolds. A Levi-flat
CR manifold is defined to be a triple (M,F , J) whereM is a smooth manifold,
F is a real codimension one smooth foliation of M (the Levi foliation of M),
and J is a smoothly varying leafwise complex structure of F . In short, a
Levi-flat CR 3-manifold is a 3-manifold foliated by Riemann surfaces. The
object of our study is CR functions, that is, complex-valued functions defined
on open sets of M which are holomorphic along the leaves of F with respect
to J . We remark that we do not assume any transverse regularity of such
functions a priori.

A fundamental problem, which has been a driving force of function theory,
is the existence problem of holomorphic functions with certain prescribed
data, such as the Riemann-Roch theorem on compact Riemann surfaces. In
this thesis, we will discuss the existence problem of a sort of CR meromorphic
functions on compact Levi-flat CR 3-manifolds.

Let us start with a toy example to illustrate our situation. Denote the
unit circle by S1 ⊂ C and consider a kind of Kronecker foliation Mα,β :=
C× S1/ ∼ where α, β ∈ R/Z and the equivalence relation ∼ is generated by
(z, ζ) ∼ (z + 1, ζ exp 2πiα) ∼ (z + i, ζ exp 2πiβ). This is a Levi-flat CR 3-
manifold whose structure is induced from the product foliation {C×{t}}t∈S1

of C×S1, and has a circle bundle structure over a complex torus T = C/Z⊕iZ
by the first projection.

The simplest case M0,0 is a direct product M0,0 ≃ T × S1. All the leaves
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2 CHAPTER 1. INTRODUCTION

are compact and isomorphic to T . Since holomorphic functions on compact
Riemann surfaces are constant, CR functions on M0,0 are reduced to func-
tions on S1. The situation is similar for the case where both α, β ∈ Q/Z.
Function theory on these spaces is just equivalent to that on compact Rie-
mann surfaces, no new mathematics.

However, the situation changes for the case where α or β /∈ Q/Z. Their
leaves become open Riemann surfaces, and Mα,β carries so many CR func-
tions, which can vary on each leaf. We quote a theorem of Inaba [19, Theorem
1] here, which states that every continuous CR function on a compact Levi-
flat CR manifold is constant along leaves of the Levi foliation. Since our
foliation has dense leaves, it follows that continuous CR functions on Mα,β

are constant functions.
This conclusion is similar to compact Riemann surfaces case. Although

materials are different between Levi-flat CR 3-manifolds and Riemann sur-
faces, the complexity of the Levi foliation (existence of dense leaves) and the
transverse regularity of CR functions (continuity) allow us to conclude this
analogous result, our starting point. It seems to be naive, but certainly we
face a phenomenon in which the dynamics of the Levi foliation F affect the
existence of CR functions with respect to J .

We will go along this way to study CR meromorphic functions on compact
Levi-flat CR 3-manifold as alternative generalization of function theory on
compact Riemann surfaces other than that on compact complex manifolds.

Before we go further, we review the principal subclass of Levi-flat CR
manifolds, Levi-flat real hypersurfaces. A smooth real hypersurfaces M in
a complex manifold is said to be Levi-flat if it locally separates its ambient
space in such a way that M is Levi pseudoconvex from its both sides.

Originally Levi-flat CRmanifolds first arose as Levi-flat real hypersurfaces
in the study of the Levi problem, which asks the characterization of a domain
of holomorphy D by a differential-geometric nature, Levi pseudoconvexity,
of its boundary M = ∂D. A domain of holomorphy means a domain D in
a complex manifold that possesses a holomorphic function defined exactly
on D, i.e., a holomorphic function that cannot be analytically continued
beyond M . It has been known to be affirmative for domains in Cn (Oka
[28], Bremermann [4], Norguet [21]), CPn (Fujita [14], Takeuchi [32]), and
Grassmanians (Ueda [33]). On the other hand, Grauert [16] pointed out
that some Levi-flat real hypersurfaces do give counterexamples of the Levi
problem. Actually, the toy exampleMα,β (α or β /∈ Q/Z) above bounds such



1.1. BACKGROUND 3

a counterexample Dα,β := C× D/ ∼. We see that Dα,β consists of Levi-flat
real hypersurfaces rMα,β := C × rS1/ ∼ (0 < r < 1) and a complex torus
T ≃ C× {0}/ ∼. Thus it carries no non-constant holomorphic function.

Such counterexamples have drawn attention, however, not so many ex-
amples have been known for compact Levi-flat real hypersurfaces. This sit-
uation leads us to study the classification problem of compact Levi-flat real
hypersurfaces. An apparent observation is that we cannot find such compact
real hypersurface in Cn since there is a strictly plurisubharmonic function∑

i=1,··· ,n |zi|2 and the maximum principle forbids the situation. The same
reasoning implies that no compact Levi-flat real hypersurface exists in Stein
manifolds.

Some progress have been made for compact Levi-flat real hypersurfaces
in Kähler manifolds of dim ≥ 3. For example, we have a theorem of Ohsawa
[25]: for any real-analytic compact Levi-flat real hypersurfaceM in a compact
Kähler manifold X of dim ≥ 3, the complement X \ M cannot be Stein.
This theorem implies a few classification results on compact Levi-flat real
hypersurfaces in Kähler manifolds of dim ≥ 3, e.g., Lins Neto’s non-existence
theorem of real analytic Levi-flat real hypersurface in CPn for n ≥ 3 ([20]).

On the other hand, for compact Levi-flat real hypersurfaces in complex
surfaces, no classification result has yet been known, and only a few restric-
tions on their Levi foliations have been known. Based on the theory of Ueda
[34], Barrett and Inaba [3, Theorem 3] observed that their leaf holonomy
along torus leaves cannot be trivial to infinite order; in particular, it implies
that the standard Reeb foliation on S3 cannot be realized as a Levi-flat real
hypersurface in any complex surface. If we restrict ourselves to the case
where the ambient manifold is a Kähler surface X, we can see that M must
be taut; in particular, it cannot contain a Reeb component. A difficulty to the
classification problem is that the complements of Levi-flat real hypersurfaces
in complex surfaces are often Stein in contrast to higher dimensional case,
and techniques used in higher dimension do not work. A famous still open
conjecture is the non-existence of compact C∞ Levi-flat real hypersurfaces in
CP2.

Another motivation of our study is to approach this problem through
function theory on Levi-flat real hypersurfaces in complex surfaces, the first
step of which is to understand how the existence of CR functions is affected
by the structure of the neighborhood of the Levi-flat real hypersurface in its
ambient space.
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1.2 Main results

The theorem of Inaba suggests us to admit “poles” for CR functions on a
compact Levi-flat CR 3-manifoldM in order to discuss globally defined ones.
To be precise, we will consider global CR sections of C∞ CR line bundles over
M .

In the theory of compact Riemann surfaces, or that of compact com-
plex manifolds, Kodaira’s embedding theorem is a typical qualitative result
concerning on global holomorphic sections of line bundles. It states that
if one has a positive holomorphic line bundle L over a compact complex
manifold, then L is ample, that is, the manifold can be embedded into com-
plex projective space of some high enough dimension by using ratio of global
holomorphic sections of L⊗n with n sufficiently large.

As a Levi-flat counterpart, Ohsawa and Sibony proved the following Ko-
daira type embedding theorem.

Theorem ([24, Theorem 3], refined in [26]). LetM be a compact C∞ Levi-flat
CR manifold equipped with a C∞ CR line bundle L. Suppose L is positive
along leaves, i.e., there exists a C∞ hermitian metric on L such that its
curvature along leaves is everywhere positive definite. Then, for any κ ∈ N,
L is Cκ-ample, i.e., there exists n0 ∈ N such that one can find global CR
sections s0, · · · , sN of L⊗n, of class Cκ, for any n ≥ n0, such that the ratio
(s0 : · · · : sN) embeds M into CPN .

We can make the parameter κ ∈ N, which expresses transverse regularity
of CR sections, arbitrarily large although we need to take the power of the
bundle n0 sufficiently large. A natural question is whether or not we can
improve the regularity to κ = ∞ with finite n0, that is to say,

Main Question. Is a positive-along-leaves CR line bundle C∞-ample?

The answer is no, in general, as the following case-study tells us.

Main Theorem. Let Σ be a compact Riemann surface, and D a holomor-
phic disc bundle over Σ. Denote its associated compact C∞ Levi-flat CR
3-manifold by M = ∂D in its associated flat ruled surface π : X → Σ. Take
a positive line bundle L over Σ. Suppose D has a unique non ±holomorphic
harmonic section, then π∗L|M is positive along leaves, but never C∞ ample.
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It is easily checked the point that the pull-back bundle π∗L|M is positive
along leaves. Thus, this theorem states non C∞-ampleness of such CR line
bundles.

The assumption is fulfilled for the following explicit example (Example
3.2.2): Let Σ be a compact Riemann surface of genus ≥ 2. Fix an identifi-

cation of a universal covering Σ̃ ≃ D and regard π1(Σ) ≃ Γ < Aut(D) as the
Fuchsian representation of Σ. Take a non-trivial quasiconformal deformation
of Γ, say ρ : Γ → Aut(D). Set D := Σ̃× D/(z, ζ) ∼ (γz, ρ(γ)ζ) for γ ∈ Γ.

Remark 1.2.1. The Levi-flat CR 3-manifold in Main Theorem is of Cω. Thus,
Main Question is negative even if we assume that M is of Cω.

Here we give a sketch of the proof of Main Theorem.

There are two ingredients. One is “very strong” pseudoconvexity, which
we call Takeuchi 1-completeness, of the complement X \ M (Proposition
3.4.1). We will construct a certain plurisubharmonic exhaustion function on
X \M of logarithmic growth near the boundary M by using the harmonic
section of D in the assumption. We will take a viewpoint from which we
can interpret this pseudoconvexity of the complement X \M as expressing
dynamical complexity of the Levi foliation F . See Example 2.4.7 and Remark
3.3.6 for further discussion on this viewpoint, which are based on the works
of Barrett [2], Eliashberg-Thurston [12], and Brunella [6].

The other is a Bochner-Hartogs type extension theorem (Theorem 4.1.1).
We remark that it particularly implies that, under certain control on com-
plexity of the Levi foliation (Takeuchi 1-completeness of the complement
X \M) and allowed poles (extendability of CR line bundle L over M to the
ambient space X), we can find κ ∈ N such that any Cκ CR section of L
automatically earns transverse C∞ regularity (Corollary 4.1.5).

Combining them, in our Main Theorem case, we understand that discus-
sions on sufficiently differentiable CR sections of π∗L|M become equivalent
to those on holomorphic sections of π∗L. On the other hand, we can easily
see that π∗L is not ample; in particular, their holomorphic sections cannot
separate points in the same fiber. In this way, non C∞-ampleness of π∗L|M
follows.
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1.3 Notes

Another research direction of the analogue of Kodaira’s embedding theorem is
the problem concerning on projective embedding of compact laminations. We
can find similar phenomenon in the work of Fornæss and Wold [13, Theorem
5.1] where they study compact C1-smooth hyperbolic laminations. We also
refer the reader to the works of Gromov [17, pp.401–402], Ghys [15, §7] and
Deroin [9].

The organization of the paper is as follows. In Chapter 2, we introduce
basic notions on Levi-flat CR manifolds. In Chapter 3, we recall and re-
fine a classification result of holomorphic disc bundles with an emphasis on
Takeuchi 1-completeness of certain holomorphic disc bundles. In Chapter 4,
we state a variant of Bochner-Hartogs type extension theorem for CR sec-
tions. We give a simple proof for the reader’s convenience. In Chapter 5, we
prove Main Theorem and pose some further questions.



Chapter 2

Preliminaries

We explain the notion of Levi-flat CR manifolds. For simplicity, we dis-
cuss under the assumption that manifolds and bundles have at least C∞-
smoothness.

2.1 Almost complex structure

We briefly recall almost complex structure and its relation with complex
structure as a preparation for the subsequent sections.

Definition 2.1.1 (almost complex structure). LetX be a real 2n-dimensional
C∞ manifold. An almost complex structure on X is J ∈ End(TX) satisfying
J2 = −Id.

By using the J , we can define an action C×TX ∋ (a+bi, v) 7→ (a+bJ)v ∈
TX, which enables us to regard TX as a complex vector bundle of rankC = n.

We can easily see that J is diagonalizable on the complexified tangent
bundle C⊗TX with eigenvalues ±i. Denote the eigenvalue decomposition by
C⊗TX = T 1,0X⊕T 0,1X where T 1,0X := Ker(J−iId) (the holomorphic tan-
gent bundle of X) and T 0,1X := T 1,0X = Ker(J + iId) (the anti-holomorphic
tangent bundle of X). We identify TX with T 1,0X as complex vector bundle
by TX ∋ v 7→ (v − iJv)/2 ∈ T 1,0X.

Any complex manifold is equipped with its canonical almost complex
structure given by

J(
∂

∂xj
) =

∂

∂yj
, J(

∂

∂yj
) = − ∂

∂xj

7
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where (zj = xj+iyj)j=1,··· ,n is any holomorphic local coordinate. On the other
hand, not every almost complex structure comes from a complex structure.
The following Newlander-Nirenberg theorem gives a criterion:

Theorem 2.1.2 (Newlander-Nirenberg). An almost complex structure J
comes from a complex structure if and only if smooth sections of the holo-
morphic tangent bundle with respect to J are closed under the Lie bracket.

Here, the Lie bracket means the complex linear extension of the usual Lie
bracket of vector fields.

2.2 Levi-flatness in terms of foliation

We give a precise definition of Levi-flat CR manifold. First recall the defini-
tion of foliation:

Definition 2.2.1 (foliation). Let M be a real m-dimensional C∞ manifold.
A C∞ foliation on M of real codimension d is a decomposition of M into
arcwise-connected injectively immersed submanifolds F = {Nα}α∈Λ of real
codimension d in such a way that for any p ∈M we can find a chart φ : U →
Rm−d×Rd around p so that for any arcwise-connected component P of Nα∩U
(α ∈ Λ) has a unique t ∈ Rd such that P = φ−1(Rm−d × {t}).

We call Nα a leaf, φ a foliated chart, and P a plaque. By abuse of notation,
we do not distinguish the immersion of a leaf ια : Nα ↪→ M with its image.
However, if we say leafwise, we consider something not only to be restricted
on each leaf but also to be discussed in the leaf topology, i.e., in the topology
of Nα, the domain of ια, not in the induced topology of ια(Nα) ⊂M .

We collect vectors tangent to leaves, and form them into a subbundle TF
of TM , whose local triviality is assured by the requirement in the definition
of foliation. We call TF the tangent bundle of F . The following Frobenius
theorem tells us when we can recover a foliation by a given subbundle:

Theorem 2.2.2 (Frobenius). Suppose a subbundle D of TM is given. There
is a foliation F whose tangent bundle TF equals to the given subbundle D.
if and only if smooth sections of D are closed under the Lie bracket,

Using these terminologies and the view of the Newlander-Nirenberg the-
orem, we give the following definition.
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Definition 2.2.3 (Levi-flat CR manifold). A C∞ Levi-flat CR manifold is a
triple (M,F , J) where M is a C∞ manifold, F is a C∞ foliation on M of real
codimension one (the Levi foliation ofM), and J is a C∞ section of End(TF)
that induces a complex structure on each leaf, i.e., J2 = −Id and smooth
sections of T 1,0 := Ker(J − iId) ⊂ C⊗ TF ⊂ C⊗ TM are closed under the
Lie bracket.

The simplest example isM = Cn−1×R where the foliation is given by its
leaves {Cn−1×{t}}t∈R and J is induced from the standard complex structure
of Cn−1. This provides the local structure of Levi-flat CR manifolds under
the requirement for foliated charts to be leafwise holomorphic with respect
to J . In other words, any C∞ Levi-flat CR manifold can be constructed by
gluing some open sets of Cn−1 × R together using leafwise holomorphic C∞

maps.

Our object of study can be defined as follows:

Definition 2.2.4 (CR function). We say that a function f : M → C is a CR
function if it is leafwise holomorphic.

2.3 Levi-flatness in terms of CR geometry

We will investigate Levi-flat CR manifolds embedded in complex manifolds,
especially Levi-flat real hypersurfaces. The following reformulation in terms
of CR geometry is suitable for this purpose.

Let us start with the definition of general CR manifold.

Definition 2.3.1 (CR manifold). A CR manifold (of hypersurface type) is a
pair (M,T 1,0) where M is a C∞ manifold of dimension 2n− 1, and T 1,0 is a
subbundle of C⊗ TM of rankC n− 1. Denote T 0,1 := T 1,0. We require that
T 1,0 ∩ T 0,1 = 0 and smooth sections of T 1,0 are closed under the Lie bracket.

It models a real hypersurface M of an n-dimensional complex manifold
(X, JX), for such M we can put T 1,0 := T 1,0X ∩ CTM ≃ (the maximal JX-
invariant subspace of TM). Moreover, if the real hypersurface M is given by
a C∞ defining function r, namely, r : M ⊂ U → R with M = {z ∈ U | r(z) =
0} and dr ̸= 0 on M , we have T 1,0 = Ker∂r ⊂ T 1,0X.

Now we can redefine
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Definition 2.3.2 (Levi-flat CR manifold). A C∞ Levi-flat CR manifold is a
C∞ CR manifold (M,T 1,0) such that smooth sections of T 1,0+T 1,0 are closed
under the Lie bracket.

Its foliation F is recovered by integrating the distribution (T 1,0 + T 1,0)∩
TM thanks to the Frobenius theorem, and its leafwise complex structure
J is recovered by the CR structure T 1,0 thanks to the requirement for CR
structure and the Newlander-Nirenberg theorem. In the case that M is lo-
cated in a complex manifold X with defining function r,M is Levi-flat if and
only if its Levi form i∂∂r|T 1,0 = 0 as a quadratic form. This is the classical
definition of Levi-flat real hypersurface.

We can also redefine our functions:

Definition 2.3.3 (CR function). We say that a function f : M → C is a CR
function if it is annihilated by vectors of T 0,1.

If M = {r = 0} ⊂ X and f is of C1, it is equivalent to say that ∂f̃ is
proportional to ∂r onM where f̃ is any C1 extension of f on a neighborhood
of M . In particular, the restriction of any holomorphic function defined near
M is CR.

2.4 Line bundles

We clarify the definition of curvature for CR line bundles over Levi-flat CR
manifolds, and remark an important example of line bundle.

Definition 2.4.1 (CR line bundle). A C∞ CR line bundle over a C∞ Levi-flat
CR manifold M is a C∞ complex vector bundle of rankC 1 that possesses a
trivialization cover whose transition functions are CR.

A straightforward example of CR line bundle is the restriction of a holo-
morphic line bundle on a Levi-flat real hypersurface.

Now let h be a C∞ hermitian metric on L. In the case of holomorphic
line bundles over complex manifolds, we can induce the Chern connection
and its curvature from the metric h . But in the case of CR line bundles
over Levi-flat CR manifolds, since our complex structure is defined only for
the leaf direction, we cannot define such canonical connection and curvature.
But still, we can define the curvature along leaves canonically.
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Proposition 2.4.2 (curvature along leaves). Let D be any connection on L
that agrees with the Chern connection on (L|N, h) along any leaf N . Then,
Θh the curvature 2-form of the connection D restricted along TF is indepen-
dent of the choice of D.

The reason is that we have the local expression Θh = −∂z∂z log h(z, t)
where (z, t) : M ⊃ U → Cn−1 × R is any foliated chart. This notion of
curvature justifies the following terminology.

Definition 2.4.3 (positive along leaves). We say a CR line bundle L to be
positive along leaves if there exists a hermitian metric h on L whose curvature
along leaves determines a positive definite quadratic form everywhere.

For compact Levi-flat CR 3-manifolds, the existence of a positive-along-
leaves bundle imposes the following restriction on the topology of its Levi
foliation.

Proposition 2.4.4. A compact C∞ Levi-flat CR 3-manifold (M,F , J) pos-
sesses a C∞ CR line bundle which is positive along leaves if and only if the
Levi foliation F is taut.

Definition 2.4.5. A C∞ foliation F of real codimension one on a C∞ man-
ifold M is taut if there exists a C1 closed transversal, i.e., a C1 embedded
circle in M which transversely intersects every leaf of F .

We will use the following geometric characterization of tautness to prove
Proposition 2.4.4.

Theorem 2.4.6 (Rummler [29], Sullivan [31]). A C∞ foliation F of real
codimension one on a closed C∞ manifold M is taut if and only if there
exists a C2 Riemannian metric on M with respect to which every leaf of F is
minimal.

Proof of Proposition 2.4.4. Suppose thatM possesses a positive-along-leaves
bundle. Ohsawa-Sibony’s embedding theorem implies that M can be C2 CR
embedded in a complex projective space. We put a Riemannian metric on
M by restricting the Fubini-Study metric. Then, any leaf of F is minimal
since any complex submanifold in a Kähler manifold is minimal with respect
to its Kähler metric.

Conversely, suppose that M is taut. By smoothing a closed transversal,
we have a C∞ one, say T . Regarding the intersection of T with the leaves of F
as a divisor, we can construct a positive-along-leaves C∞ CR line bundle.
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We close this chapter with an important example of line bundle.

Example 2.4.7. Let M be a C∞ Levi-flat CR manifold. We can define the
normal bundle NF of the Levi foliation F by NF := C⊗ TM/TF . It is easy
to check that NF is a CR line bundle as follows:

Proof. We can trivialize it by ∂/∂t on a foliated chart (z, t) : U → Cn−1 ×R.
If we have two intersecting foliated charts, say (z, t), (z′, t′), we know that
t′ depends only on t not on z. Thus, the transition function of the normal
bundle ∂t′/∂t is constant function in z, especially CR.

When the Levi-flat CR manifold is realized as a Levi-flat real hypersurface
M in a complex manifoldX, we have another definition of the normal bundle:
define the complex normal bundle of M by a quotient of CR vector bundles
N1,0
M := T 1,0X/T 1,0. It follows easily that the two normal bundles NF and

N1,0
M are isomorphic as CR line bundle.
An important feature of this normal bundle is that it simultaneously ap-

proximates both transverse structure of the Levi foliation F and neighbor-
hood of M in X, which feature permits us to take the viewpoint: dynamical
property of the Levi foliation F is reflected on pseudoconvexity of X \M .
For this direction, we refer the reader to the work of Brunella [6].



Chapter 3

Holomorphic disc bundles in
flat ruled surfaces

We recall a classification result on holomorphic disc bundles, with which
a standard example of Levi-flat CR 3-manifolds associate, and supplement
preceding results about pseudoconvexity of these spaces.

3.1 Holomorphic disc bundles

We begin by recalling a construction of holomorphic disc bundles. Let Σ be
a compact Riemann surface. A holomorphic fiber bundle over Σ with fiber
D := {ζ ∈ C | |ζ| < 1} is called a holomorphic disc bundle over Σ. It can be
easily seen that holomorphic trivializations form a flat trivializing cover, i.e.,
all of the transition functions are locally constant.

Hence, any holomorphic disc bundle D can be obtained by the suspension
construction: we can find a group homomorphism ρ : π1(Σ) → Aut(D), called
a holonomy homomorphism, giving a bundle isomorphism

D ≃ Σ×ρ D
:= Σ̃× D/(z, ζ) ∼ (γz, ρ(γ)ζ) for γ ∈ π1(Σ)

where Σ̃ is a universal covering of Σ. We denote this disc bundle by Dρ.
The group Aut(D) of biholomorphisms of D consists of Möbius transfor-

mations preserving D, acting on the Riemann sphere CP1 and fixing the unit
circle ∂D. Thus, it follows that a holomorphic disc bundle is canonically

13
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embedded in its associated flat ruled surface, say π : Xρ := Σ ×ρ CP1 → Σ,
and the boundary of Dρ in Xρ, a flat circle bundle, becomes a compact Cω
Levi-flat CR 3-manifold, say Mρ := Σ ×ρ ∂D. Note that Dρ → X \ Dρ,
(z, ζ) 7→ (z, 1/ζ) is an anti-biholomorphism, which we call the conjugation.

3.2 Classification

Now we state a classification result of holomorphic disc bundles by means of
harmonic sections:

Theorem 3.2.1 ([10], [11, Proposition 1.1]). Let D be a holomorphic disc
bundle over a compact Riemann surface and M its associated Levi-flat CR
3-manifold. Then, one of the following cases occurs:

(i) D admits a unique non-holomorphic harmonic section.

(ii) D admits a unique locally non-constant holomorphic section.

(iii) M admits one or two locally constant section(s).

(iv) D admits a locally constant section.

Here a section is said to be harmonic if it is lifted to a ρ-equivariant
harmonic map h̃ : Σ̃ → D where D is equipped with the Poincaré metric, and
a section is said to be locally constant if it is locally constant in the (flat)
trivializing coordinates.

Example 3.2.2. We describe examples of each case in terms of holonomy
homomorphism.

(i) Let Σ be of genus ≥ 2. Fix an identification Σ̃ ≃ D and regard π1(Σ) ≃
Γ < Aut(D) as the Fuchsian representation of Σ. Take a non-trivial
quasiconformal deformation of Γ, say ρ : Γ → Aut(D). Then Dρ is of
the case (i). The unique harmonic section corresponds to the graph of
the unique harmonic diffeomorphism Σ = D/Γ → D/ρ(Γ).

(ii) Let Σ and Γ as above, and ρ = Id: Γ → Γ ⊂ Aut(D). Then, Dρ is
of the case (ii). Its associated holomorphic section is obtained by the

quotient of the diagonal set ∆ ⊂ Σ̃× D = D× D.
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(iii) Let ρ be a homomorphism from π1(Σ) to an abelian subgroup of Aut(D)
that consists of parabolic (resp. hyperbolic) elements with common
fixed point(s) on ∂D. Then, Dρ is of the case (iii). The locally constant
section(s) correspond(s) to the suspension of the fixed point(s).

(iv) Let ρ be a homomorphism from π1(Σ) to an abelian subgroup of Aut(D)
that consists of elliptic elements with common fixed point in D, which
is just isomorphic to the group of rotations U(1). Then, Dρ is of the
case (iv). The suspension of the fixed point gives a locally constant
section.

For the cases (i) and (ii), we described only the cases where associated
flat circle bundles Mρ attain the maximal Euler number in the Milnor-Wood
inequality. The Euler number of a flat circle bundle Mρ over Σ, say χ(Mρ),
satisfies the Milnor-Wood inequality: |χ(Mρ)| ≤ max{0, 2genus(Σ)−2}. The
component where χ(Mρ) = 2genus(Σ) − 2 is naturally identified with the
Teichmüller space of Σ via quasiconformal deformation of Fuchsian represen-
tation.

For the cases (iii) and (iv), the examples above exhaust the cases, respec-
tively. They all belong to the component where χ(Mρ) = 0.

3.3 Pseudoconvexity

We prepare several definitions in order to express pseudoconvexity of the
domain bounded by a Levi-flat CR manifold, on which dynamics of the Levi
foliation is reflected.

First recall some terminologies on potential function.

Definition 3.3.1. Let X be a complex manifold of dimension n and ψ : X →
[−∞,∞). We say that ψ is

• plurisubharmonic if it is upper semicontinuous and its restriction ψ|C
to any holomorphic curve C ↪→ X is subharmonic.

• an exhaustion function (resp. a bounded exhaustion function) if supX ψ =
∞ (resp. supX ψ < ∞) and for any c ∈ (−∞, supX ψ) the sublevel set
{z ∈ X | ψ(z) < c} is relatively compact in X.

Suppose that ψ : X → (−∞,∞) and ψ is of C2. Define its Levi form as the
quadratic form determined by i∂∂ψ. We say that ψ is
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• q-convex if its Levi from has at least (n − q + 1) positive eigenvalues
everywhere.

• weakly q-convex if its Levi from has at least (n − q + 1) nonnegative
eigenvalues everywhere.

• strictly plurisubharmonic if its Levi form is positive definite everywhere,
that is, 1-convex.

Let us define several notions of pseudoconvexity, which express what kind
of potential functions a domain carries.

Definition 3.3.2. Let X be a complex manifold of dimension n. We say
that X is

• pseudoconvex if X possesses a continuous plurisubharmonic exhaustion
function.

• q-convex (resp. weakly q-convex) if X possesses a C∞ exhaustion func-
tion which is q-convex (resp. weakly q-convex) outside a compact set
of X.

• q-complete (resp. weakly q-complete) if X possesses a C∞ q-convex
(resp. weakly q-convex) exhaustion function.

• hyperconvex if X possesses a C∞ strictly plurisubharmonic bounded
exhaustion function.

Note that 1-completeness is equivalent to being Stein.

The classical pseudoconvexities above do not ask growth order of the
potential function along the boundary, or boundary behavior of eigenvalues
of its Levi form. We follow the following definition in [11].

Definition 3.3.3 (Takeuchi q-convex space). Let X be a complex manifold
of dimension n and D a relatively compact domain in X with C2 boundary.
D is said to be Takeuchi q-convex if there exists a C2 defining function r of
∂D defined on a neighborhood of D with D = {z | r(z) < 0} such that, with
respect to a hermitian metric on X, at least n− q+1 eigenvalues of the Levi
form of − log(−r) are greater than 1 outside a compact set of D.
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Potential functions having the particular form − log(−r) have their origin
in Oka [27], where the Levi problem was solved for domains in C2 by using
the potential function − log (the Euclidean distance to its boundary).

To return to our case, holomorphic disc bundles, known facts on pseudo-
convexity of them are summarized as follows:

• In all the cases, D is weakly 1-complete ([10, Theorem 1]).

• In the cases (i)–(iii), D is 1-convex. It is particularly 1-complete, i.e.,
Stein in the cases (i) and (iii) ([2, Theorem 2]).

• In the cases (i) and (ii), D is Takeuchi 1-convex ([11, Proposition 1.6]1).

We will give a supplemental result for the case (i) using the following
notion.

Definition 3.3.4 (Takeuchi q-complete space). LetX be a complex manifold
of dimension n and D a relatively compact domain in X with C2 boundary.
D is said to be Takeuchi q-complete if there exists a C2 defining function r
of ∂D defined on a neighborhood of D with D = {z | r(z) < 0} such that,
with respect to a hermitian metric on X, at least n− q+1 eigenvalues of the
Levi form of − log(−r) are greater than 1 entire on D.

This notion originates in the work of Takeuchi [32] where he showed
any proper locally pseudoconvex domain in CPn acquires this property for
q = 1. Although it has already had other names, log δ-pseudoconvexity in
[5], and the strong Oka condition in [18], we name it again in consideration
of consistency with the terms in Definition 3.3.2 and 3.3.3.

Takeuchi 1-completeness not only implies that the domain is Stein, but
also implies that it behaves as if it is in complex Euclidean space:

Theorem 3.3.5 ([22, Theorem 1.1]). Let D be a Takeuchi 1-complete domain
with defining function r. Then, −∂∂ log(−r) gives a complete Kähler metric
on D, and it follows that −(−r)t0 with sufficiently small t0 > 0 becomes
a strictly plurisubharmonic bounded exhaustion function on D, i.e., D is
hyperconvex.

1Its proof seems to contain some errors.
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Remark 3.3.6. From the viewpoint of confoliation [12, Corollary 1.1.10], we
can translate a question on various strong pseudoconvexity of the comple-
ment of a Levi-flat real hypersurface into one on approximation of a foliation
by contact structures. For example, suppose a compact Levi-flat real hyper-
surfaceM has a Takeuchi 1-convex complement with defining function r. For
small positive ε, the level sets {r = −ε} are diffeomorphic to M and possess
contact structures induced from the strictly pseudoconvex CR structures.
Thus, the family of the level sets defines a “uniform” contact deformation of
the Levi foliation. Here “uniform” means that convergence to the foliation
is exactly the same order entire on M .

3.4 Takeuchi 1-complete case

We give the following supplemental result, which is the main technical point
of this thesis, on pseudoconvexity of holomorphic disc bundles for the case
(i) in Theorem 3.2.1.

Proposition 3.4.1. Let D be a holomorphic disc bundle over a compact
Riemann surface Σ with a uniquely determined non-holomorphic harmonic
section h. Then, D is Takeuchi 1-complete in its associated ruled surface X.

Proof. Fix a finite open covering {Uν} of Σ giving trivializations of D. Set
δ = maxν supUν

|h| < 1 where the value of h is taken with respect to the
trivializing coordinate over each Uν . It suffices to find a defining function r
of ∂D so that the eigenvalues of the complex Hessian of − log(−r) in each
trivializing coordinate (z, ζ) : π−1(Uν) → C2 are bounded from below by a
positive constant, since we can easily find a hermitian metric on X that is
comparable to i(dzdz + dζdζ) by usual “partition of unity” argument.

We will find the desired r in the form r = r0e
−ψ where r0 is the defining

function of ∂D used in [10], and ψ : Σ → R will be determined later. Recall
the original defining function

r0(z, ζ) :=

∣∣∣∣∣ ζ − h(z)

1− h(z)ζ

∣∣∣∣∣
2

− 1

where (z, ζ) is any trivializing coordinate. It is clearly well-defined since the
term inside the modulus is just a Möbius transformation that maps h(z) to
0 and remaining choices of the fiber coordinate are only up to rotations.
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Take one of the trivializations, say (z, ζ) : π−1(Uν) → C2. The Levi form
is

i∂∂(− log(−r))
= i∂∂

(
ψ − log(1− |ζ|2)− log(1− |h|2) + 2Re log(1− hζ)

)
=

(
ψzz + (1− |ζ|2)(|hz|2 + |hz|2) + |ζ − h|2|hz − e2iθ(z,ζ)hz|2

) idz ∧ dz
|1− hζ|2(1− |h|2)

− hz
idz ∧ dζ
(1− hζ)2

− hz
idζ ∧ dz
(1− hζ)2

+
idζ ∧ dζ
(1− |ζ|2)2

where θ(z, ζ) := arg(ζ − h)/(1− hζ) and all the values on h and ψ are taken
at z. We can check it by direct computation in three steps:

(i) Fix z0 ∈ U in the trivialization. Choose a temporal trivializing coordi-
nate (z, ζ♮) with h♮(z0) = 0.

(ii) Compute the Levi form on the fiber Dz0 in (z, ζ♮) coordinate. Note
that the harmonicity of h yields hzz(z0) = 0.

(iii) Pull back the form to (z, ζ) coordinate.

Now we are going to estimate the eigenvalues of the complex Hessian. The
trace and determinant of the complex Hessian of − log(−r) are estimated as

trace =
1

(1− |ζ|2)2
+
ψzz + (1− |ζ|2)(|hz|2 + |hz|2) + |ζ − h|2|hz − e2iθ(z,ζ)hz|2

|1− hζ|2(1− |h|2)

≤ 1

(1− |ζ|2)2
+
ψzz + (1− |ζ|2)(|hz|2 + |hz|2) + |ζ − h|2|hz − e2iθ(z,ζ)hz|2

(1− δ)3

≤ 1

(1− |ζ|2)2
+
ψzz + (1− |ζ|2 + 2|ζ − h|2)(|hz|2 + |hz|2)

(1− δ)3

≤ 1

(1− |ζ|2)2
+
ψzz + 8(|hz|2 + |hz|2)

(1− δ)3

≤ 1

(1− |ζ|2)2
+ sup

U

ψzz + 8(|hz|2 + |hz|2)
(1− δ)3

=:
1

(1− |ζ|2)2
+ C.

det =
ψzz

(1− |ζ|2)2
+

1

(1− |ζ|2)2

(
|ζ − h|2|hz − e2iθ(z,ζ)hz|2

|1− hζ|2(1− |h|2)2

)
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+
1

1− |ζ|2

(
|hz|2

|1− hζ|2(1− |h|2)
+

|ζ − h|2|hz|2

|1− hζ|4(1− |h|2)

)
≥ ψzz

(1− |ζ|2)2
+

|ζ − h|2|hz − e2iθ(z,ζ)hz|2

4(1− |ζ|2)2
+

|hz|2

4(1− |ζ|2)
+

|ζ − h|2|hz|2

16(1− |ζ|2)

≥ ψzz
(1− |ζ|2)2

+
|ζ − h|2(|hz| − |hz|)2 + (1− |ζ|2)|hz|2

4(1− |ζ|2)2

≥ ψzz
(1− |ζ|2)2

+
(|ζ − h|2 + 1− |ζ|2)min{(|hz| − |hz|)2, |hz|2}

4(1− |ζ|2)2

≥ ψzz
(1− |ζ|2)2

+
(1− δ)2 min{(|hz| − |hz|)2, |hz|2}

4(1− |ζ|2)2
.

We will set ψ to have sufficiently small range so that the trace is positive, in
which situation the smaller eigenvalue λ of the complex Hessian of − log(−r)
is estimated as

λ =
trace

2
−

√
trace

2
− det ≥ det

trace

≥ 1

1 + C

(
ψzz +

(1− δ)2

4
min{|hz|2, (|hz| − |hz|)2}

)
.

Note that this estimate does not depend on ζ, and is sharp in the sense
that the smaller eigenvalue of the complex Hessian of − log(−r0), which
corresponds to the second term in the estimate, actually equals to 0 at (z, 0)
if hz(z) = 0 and tends to 0 near some points of ∂Dz if |hz(z)| = |hz(z)|,
which facts can be deduced from the explicit formula of the Levi form. This
situation leads us to modify r0 with ψ strictly subharmonic on such locus in
Σ.

From Lemma 3.4.2 below, we can find a non-empty relatively compact set
V ⊂ Σ on which both |hz| and |hz|−|hz| never vanish. Removing a relatively
compact W ⊂ V from Σ, we obtain an open Riemann surface Σ \W , which
carries a strictly subharmonic exhaustion function ψ0. We extend ψ0|Σ \ V
to Σ so as to vanish onW , say ψ1. We take 0 < c≪ 1 for ψ := cψ1 to satisfy,
in the all of the trivializing coordinates, ψzz(1− δ)−3 > −1, and

ψzz +
(1− δ)2

4
min{|hz|2, (|hz| − |hz|)2} > 0 on V .

Using this ψ, we have obtained the desired defining function r.
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Lemma 3.4.2. Let D,Σ, and h as in Proposition 3.4.1. Then,

(i) The zero set of hz is finite.

(ii) The set {|hz| − |hz| ̸= 0} is open dense in Σ.

Proof. (i) We have well-defined forms |hz|(1− |h|2)−1|dz|, |hz(1− |h|2)−1|dz|
and Hopf(h) := hzhz(1−|h|2)−2dz2 on Σ. The harmonicity of h is equivalent
to holomorphicity of Hopf(h), whose zero set consists of 4g−4 points. (Note
that the assumption implies that π1(Σ) is non-abelian, thus genus of Σ > 1.)
Therefore the zero set of hz is also finite.

(ii) Suppose {|hz| − |hz| = 0} = {rank dh < 2} contains a non-empty
open set in Σ. From a theorem of Sampson [30, Theorem 3], the image of

the lift h̃ : Σ̃ → D becomes a point, or a geodesic arc. The former case is
impossible since the point is fixed by ρ and it is of the case (iv) in Theorem
3.2.1. The latter case is also impossible since the end points of the geodesic
arc are fixed by ρ and it is of the case (iii) in Theorem 3.2.1. Thus, the claim
is proved.

Question 1. What about the case (iii)? We know an example in which Dρ is
Stein but not Takeuchi 1-complete ([22, Theorem 1.2]).





Chapter 4

A Bochner-Hartogs type
extension theorem

4.1 A Bochner-Hartogs type extension theo-

rem

We will state a Bochner-Hartogs type extension theorem for CR sections
of finite regularity, which can be obtained by established procedures as in
[23], [5] and [7]. Here we give a simple proof for the reader’s convenience.
For the standard techniques used in this chapter, we refer the reader to the
“OpenContent Book” of Demailly [8].

Theorem 4.1.1. Let X be a connected compact complex manifold of dimen-
sion n ≥ 2, L a holomorphic line bundle over X, and M a C∞ compact
Levi-flat real hypersurface of X which splits X into two Takeuchi 1-complete
domains D ⊔ D′. Then, there exists κ ∈ N such that any Cκ CR section of
L|M extends to a holomorphic section of L.

Proof. We set

N0 := min

N ∈ N

∣∣∣∣∣∣∣∣∣∣
iΘh0 −Ni∂∂(− log(−r)) < 0 on D,

iΘh0 −Ni∂∂(− log(−r′)) < 0 on D′,
h0: hermitian metric of L,
r (resp. r′): defining function of M
which makes D (resp. D′) Takeuchi 1-complete

 .

23
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The assumption yields N0 < ∞. Put κ := ⌈n + 1 + N0/2⌉(≥ 4). Take h0,
r, and r′ to attain the minimum, and fix an arbitrary hermitian metric g0 of
X.

We denote by ⟨·, ·⟩g0,h0 (resp. | · |g0,h0) the fiber metric (resp. norm) of
L⊗

∧
CTX∗ determined by g0 and h0, and write dvolg0 for the volume form

on X determined by g0. Integration with respect to these metrics is denoted
by

⟨⟨ω, η⟩⟩g0,h0,D :=

∫
D

⟨ω, η⟩g0,h0dvolg0

and write ∥ω∥2g0,h0,D := ⟨ω, ω⟩g0,h0,D. We also use the following notation for
function spaces.

• Cκ(p,q)(X,L): the space of L-valued Cκ (p, q)-forms over X.

• Cκ0,(p,q)(D,L): the space of L-valued compactly supported Cκ (p, q)-
forms over D.

• L2
(p,q)(D,L; g0, h0): the space of L-valued measurable (p, q)-forms over

D whose ∥ · ∥g0,h0,D norm is finite.

We will omit the subscript (p, q) when (p, q) = (0, 0).
The proof is separated into three lemmas.

Lemma 4.1.2. Let s be a Cκ CR section of L|M . Then we can extend s to
s̃ ∈ C2(X,L) so that

|∂s̃|0 := |∂s̃|g0,h0 = O(rκ−2) along M (4.1)

where r is any C∞ defining function of M .

Proof of Lemma 4.1.2. Firstly, we extend s to a Cκ section of L, still denoted
by s, using a C∞ collaring M × (−ϵ, ϵ) → X of M and a transversal cut-off
function with enough small support. Since s|M is CR, we can find a Cκ−1

section of L|M , say α1, such that ∂s = α1∂r on M . We extend α1 to a Cκ−1

section of L. Put s1 := s−α1r. Then, |∂s1|0 = |(∂s−α1∂r)−∂α1r|0 = O(r)
because ∂s1 vanishes on M and is of class Cκ−2.

Suppose we have inductively constructed a Cκ−ℓ extension sℓ of s with
sℓ = s − α1r − α2r

2/2 − · · · − αℓr
ℓ/ℓ and |∂sℓ|0 = O(rℓ). Write ∂sℓ = βℓr

ℓ

with βℓ ∈ Cκ−(ℓ+1)
(0,1) (X,L). We obtain 0 = ∂

2
sℓ = ∂βℓr + ∂r ∧ βℓ. Thus, we

can find αℓ+1 ∈ Cκ−(ℓ+1)(X,L) such that βℓ = αℓ+1∂r on M . Putting sℓ+1 :=
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sℓ−αℓ+1r
ℓ+1/(ℓ+1) gives |∂sℓ+1|0 = |(βℓ−αℓ+1∂r)r

ℓ−∂αℓ+1r
ℓ+1|0 = O(rℓ+1)

while βℓ − αℓ+1r
ℓ is differentiable, which holds if κ− (ℓ+ 1) ≥ 1.

Letting s̃ := sκ−2 completes the proof.

We perform a correction to s̃ to obtain the desired holomorphic extension.
Once we solve the ∂-equation ∂u = ∂s̃ on X in the distribution sense with
the condition u|M = 0, we obtain the desired extension s̃−u since holomor-
phic functions are characterized as weak solutions of the Cauchy-Riemann
equation.

By Theorem 3.3.5, i∂∂(− log(−r)) defines a complete Kähler metric g
on D, which blows up in O(r−2) along M . Consider the hermitian metric
h = h0r

−N0 on L. The condition (4.1) on s̃ implies

∥∂s̃∥2g,h := ∥∂s̃∥2g,h,D

=

∫
D

|∂s̃|2g,hdvolg =
∫
D

O(r2(κ−2))O(r2)O(r−N0)O(r−2n) <∞,

i.e., ∂s̃ ∈ L2
(0,1)(D,L; g, h). We can solve ∂u = ∂s̃ on D thanks to the

following L2 cohomology vanishing theorem.

Lemma 4.1.3. For any v ∈ L2
(0,1)(D,L; g, h) with ∂v = 0, there exists

a solution u ∈ L2(D,L; g, h) of ∂u = v in the sense that there exists a
sequence un ∈ C∞

0 (D,L) such that un → u in L2(D,L; g, h) and ∂un → v in
L2
(0,1)(D,L; g, h).

Proof of Lemma 4.1.3. By the standard L2 method of Andreotti-Vesentini
[1], the conclusion follows from the following estimate

∥∂u∥2g,h + ∥∂∗g,hu∥2g,h ≳ ∥u∥2g,h

for u ∈ C∞
0,(0,1)(D,L). Here ∂

∗
g,h denotes the formal adjoint of the operator

∂ : L2(D,L; g, h) → L2
(0,1)(D,L; g, h). Note that we have used the complete-

ness of g to obtain the solution not only in the sense of distribution but also
in the sense above.

By the Nakano inequality, we achieve the estimate as follows:

∥∂u∥2g,h + ∥∂∗g,hu∥2g,h ≳ ⟨⟨[iΘh,Λ]u, u⟩⟩g,h = −⟨⟨iΘhu, Lu⟩⟩g,h

≳ −min

{
sum of the (n− 1) eigenvalues of iΘh

with respect to g

}
∥u∥2g,h.
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The eigenvalues of iΘh with respect to g tend to −N0 near M . It follows
that the RHS ≳ ∥u∥2g,h.

Performing the same procedure on D′, we obtain a section u of L|D ⊔D′

with ∂u = ∂s̃ on D ⊔ D′ in the sense above. Consider the zero extension
of u on X, still denoted by u. The following lemma completes the proof of
Theorem 4.1.1.

Lemma 4.1.4. ∂u = ∂s̃ on X in the sense of distribution.

Proof. Let un ∈ C∞
0 (D⊔D′, L) ⊂ C∞(X,L) be the approximation of u found

in Lemma 4.1.3. Since L2(D,L; g0, h0) ↪→ L2(D,L; g, h) is continuous, we
have un → u in L2(D ⊔D′, L; g0, h0) ≃ L2(X,L; g0, h0).

Take a test function ϕ ∈ C∞(X,L). Denote by ∂
∗
0 the formal adjoint of

the operator ∂ : L2(X,L; g0, h0) → L2
(0,1)(X,L; g0, h0). Then,

⟨⟨∂u− ∂s̃, ϕ⟩⟩g0,h0,X = ⟨⟨u, ∂∗0ϕ⟩⟩g0,h0,X − ⟨⟨∂s̃, ϕ⟩⟩g0,h0,X
= lim

n→∞
⟨⟨un, ∂

∗
0ϕ⟩⟩g0,h0,X − ⟨⟨∂s̃, ϕ⟩⟩g0,h0,X

= lim
n→∞

⟨⟨un, ∂
∗
0ϕ⟩⟩g0,h0,D⊔D′ − ⟨⟨∂s̃, ϕ⟩⟩g0,h0,D⊔D′

= lim
n→∞

⟨⟨∂un − ∂s̃, ϕ⟩⟩g0,h0,D⊔D′

= 0.

It completes the proof.

Corollary 4.1.5. Suppose X, L, M , and κ as in Theorem 4.1.1. Then, all
of the Cκ CR sections of L|M are automatically of class C∞, and they form
a finite dimensional vector space.

We will use the following form of Theorem 4.1.1 in the proof of Main
Theorem.

Corollary 4.1.6. Suppose X, L and M as in Theorem 4.1.1. Then, any C∞

CR section of L|M extends to a holomorphic section of L.
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Conclusion

5.1 Proof of Main Theorem

Proof of Main Theorem. From Proposition 3.4.1, D is Takeuchi 1-complete.
The harmonic section of X \ D is obtained by conjugating the harmonic
section of D. Thus, X \ D is also Takeuchi 1-complete. Hence, Corollary
4.1.6 implies that for any n ≥ 1, all of the C∞ CR sections of (π∗L|M)⊗n

extend to holomorphic sections of (π∗L)⊗n.
On the other hand, π∗ : H0(Σ, L⊗n) → H0(X, (π∗L)⊗n) gives an isomor-

phism. Since we can give a trivializing cover of (π∗L)⊗n by pulling back that
of L, and the sections should be constant along any fiber π−1(p) ≃ CP1 in
these trivializations. Hence it is impossible for the sections inH0(X, (π∗L)⊗n)
to separate points in the same fiber for any n. Therefore, we cannot make a
projective embedding by any ratio of those sections.

5.2 Further questions

We conclude this paper with further questions.

Question 2. Can we prove Main Theorem intrinsically, i.e., without looking
the natural Stein filling?

Question 3. Let M be a compact Levi-flat CR manifold, and L a CR line
bundle over M . We define the threshold regularity κ(M,L) to be the min-
imal κ ∈ N ∪ {∞}, if exists, so that Cκ CR sections of L form a finite
dimensional vector space. In the situation illustrated in Main Theorem,

27
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the proof of Theorem 4.1.1 indicates that κ(M, (π∗L|M)⊗n) is well-defined
and κ(M, (π∗L|M)⊗n) = O(n) as n → ∞. On the other hand, Ohsawa-
Sibony’s projective embedding theorem implies that κ(M, (π∗L|M)⊗n) → ∞
as n → ∞. Can we read any dynamical property of the Levi foliation from
the asymptotic behavior of the κ(M, (π∗L|M)⊗n)?
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