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Introduction

We consider the iteration of a holomorphic map on a complex manifold as com-
plex dynamics. The Fatou set is defined as the largest open set on which the family
of iterates is normal, or, roughly speaking, on which the dynamics are stable. The
Julia set is defined as the complement of the Fatou set. Recently, the study of one-
dimensional complex dynamical systems has developed because of the progress
of computer technology. The success of the study of one-dimensional complex
dynamics is now promoting the study of higher-dimensional complex dynamics.

We are concerned with symmetries of Julia sets in higher dimensions. We say
that a Julia set has symmetries if it is preserved by non-elementary transforma-
tions. For example, one can construct holomorphic maps which commute with
each action of a polyhedral group acting on the Riemann spgteris Julia sets
are preserved by each action of the polyhedral group. As another example, there
are Julia sets of polynomials @ that are each preserved by some rotations. We
generalize these objects and results of symmetries of Julia sets in one dimension
to those in higher dimensions.

This thesis consists of two parts. In chapter 1, we will show that a family of
holomorphic maps on complex projective spaces has good dynamical properties.
S. Crass constructed a family of holomorphic maps which has the following prop-
erties: for each integds;, there exists a holomorphic map that commutes with each
element of thgk + 2)-th symmetry group acting on thedimensional complex
projective spac®X, and whose critical set coincides with the special hyperplane
of the (k + 2)-th symmetry group action. We prove that the Fatou sets of this
family consist of attracting basins and that each map of this family satisfies Ax-
iom A. This result gives the first nontrivial example of holomorphic maps whose
Julia sets have the symmetries of finite group actions, and for which the global dy-
namics are understood. In higher dimensions, there are only few examples whose
dynamics are well understood.

In chapter 2, we will investigate symmetries of Julia sets of polynomial skew
products orC?. We define polynomial skew products 61 as regular polynomial
maps orC? whose first component depends only on the first component of the co-
ordinates. The dynamics of polynomial skew products38rare closely related



to those of polynomials o€. The second Julia sets of polynomial skew products
are analogues to the Julia sets of polynomials. We consider only those symmetries
of the second Julia sets of polynomial skew products, which are definegihy a
maps whose first component depends only on the first coordinate. First, we inves-
tigate the structure of symmetries and give a necessary diiciesot condition for

the group of symmetries to be infinite. Next, we show that, except for two types,
polynomial skew products with the same second Julia set are essentially the same.
As a corollary, except for two types, the first Julia set is determined only by the
second Julia set. The first Julia set of a polynomial skew product is defined by the
Julia set of its extension to the 2-dimensional projective space.

Notes

The first chapter "Dynamics of symmetric holomorphic maps on projective spaces”
is a modified version of my paper published in Publicacions Mat&ues Vol.51,
no.2, 333-344, 2007.
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Chapter 1

Dynamics of symmetric holomorphic
maps on projective spaces

We consider complex dynamics otaitically finite holomorphic map fronPX to
Pk, which has symmetries associated with the symmetric g&up acting on
Pk, for eachk > 1. The Fatou set of each map of this family consists of attractive
basins of superattracting points. Each map of this family satisfies Axiom A.

1.1 Introduction

For a finite group acting onPK as projective transformations, we say that a ratio-
nal mapf on PKis G-equivariantif f commutes with each element®f That is,
for =ro fforanyr € G, whereo denotes the composition of maps. Doyle and
McMullen [4] introduced the notion aéquivariantfunctions onP! to solve quin-
tic equations. See also [11] fequivariantfunctions onP*. Crass [2] extended
Doyle and McMullen’s algorithm to higher dimensions to solve sextic equations.
Crass [3] found a good family of finite groups aaduivariantmaps for which
one may say something about global dynamics. Crass [3] conjectured that the
Fatou set of each map of this family consists of attractive basins of superattract-
ing points. Although I do not know whether this family has relation to solving
equations or not, our results will givetmative answers for the conjectures in
[3].

In section 2 we shall explain an action of the symmetric gréup, on PX
and properties of ouBy o-equivariant map. In section 3 and 4 we shall show our
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results about the Fatou sets and hyperbolicity of our maps by using properties of
our maps and Kobayashi metrics.

1.2 Sy .-equivariant maps

Crass [3] selected the symmetric groBp.» as a finite group acting oR* and

found anSy; 2-equivariantmap which is holomorphic anditically finite for each

k > 1. We denote b€ = C(f) the critical set off and say thaf is critically finite

if each irreducible component @f( f) is periodic or preperiodic. More precisely,
Sk+2-equivariantmap gg+3 defined in section 1.2.2 preserves each irreducible
component ofC(gk+3), which is a projective hyperplane. The complement of
C(gk+3) is Kobayashi hyperbolic. Furthermore restrictionsgef 3 to invariant
projective subspaces have the same properties as above. See section 1.2.3 for
details.

1.2.1 Sy, actson P

An action of the(k + 2)-th symmetric groufBy., on PX is induced by the per-
mutation action o5y 2 on Ck*+2 for eachk > 1. The transpositiofi, j) in Sk;2
corresponds with the transposition "~ u;j” on CK*2, which pointwise fixes the
hyperplane{u; = uj} = {u € C§™2 | uj = uj). HereCxt2 = CK2 = (u =
(ug, Uz, -, Uky2) U € C for i =1, k+2}.

The action oSy, » preserves a hyperplahein CK2, which is identified with
CX*1 by projectionA : CKT2 — ckt1,

10..0 -1

k+2 0 1 0 -1
H:{Zuizo}édﬁlaﬂdA: , .

i=1 - .o

| 00..1 -1

HereCk+1 = CK*1 — (x = (xq, %, -, Xk11) | X € C for i =1, k+1}.
Thus the permutation action &2 on Cﬁ*z induces an action of3y " on
CK*L. Here "Sk+2" IS generated by the permutation actiSg, 1 on ck*land a



(k+ 1,k+ 1)-matrix T which corresponds to the transpositidn k+ 2) in Sk, 2,

-1 0 ... 0

-1 1 ... 0
T=] . .

o .0

-1 0 ... 1

Hence the hyperplane correspondingip = uj}is {x = Xj}for1 <i < j <
k+ 1. The hyperplane corresponding{ia = uki2}is{x = 0} forl <i <
k4 1. Each element inSy. 2" which corresponds to some transpositiorSig,.»
pointwise fixes one of these hyperplane<ii*.

The action of Sy»” on Ckt1 projects naturally to the action oBj,,” on
PK. These hyperplanes d@*t1 projects naturally to projective hyperplanes on
PK. HerePX = {x = [xg : X2 : = : Xr1] | (X1, %2, -, Xks1) € CKT1\ {0}}. Each
element in the action ofSy»” on PX which corresponds to some transposition in
Sk.2 pointwise fixes one of these projective hyperplanes. We deigte,” also
by Sk.2 and call these projective hyperplanes transposition hyperplanes.

1.2.2 Existence of our maps

One way to geSy, 2-equivariantmaps orPX which arecritically finite is to make
Sk+2-equivariantmaps whose critical sets coincide with the union of the transpo-
sition hyperplanes.

Theorem 1 ([3]). For each k> 1, gk+3 defined below is the uniquey -
equivariant holomorphic map of degree+k3 which is doubly critical on each
transposition hyperplane.

0= 03 = [Ok+31: Okr32: & Okraksa] : PK — P,
o5t -

and Asis the elementary symmetric function of degree kaknt,

Then the critical set of coincides with the union of the transposition hyper-
planes. Sinceg is Sk, 2-equivariantand each transposition hyperplane is point-
wise fixed by some element By, 2, g preserves each transposition hyperplane.
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In particularg is critically finite. Although Crass [3] used this explicit formula
to prove Theorem 1, we shall only use properties of $hes-equivariantmaps
described below.

1.2.3 Properties of our maps

Let us look at properties of tH@, ,-equivariantmapg on PX for a fixedk, which

is proved in [3] and shall be used to prove our results. ILlket denote one of
the transposition hyperplanes, which is isomorphiPto'. Let L™ denote one of
the intersections ofk — m) or more distinct transposition hyperplanes which is
isomorphic toP™ form=10,1,--, k- 1.

First, let us look at properties gfitself. The critical set ofj consists of the
union of the transposition hyperplanes. By, »>-equivariance g preserves each
transposition hyperplane. Furthermore the complement of the critical geisof
Kobayashi hyperbolic.

Next, let us look at properties gfrestricted toL™ form = 1,2,--,k— 1. Let
us fix anym. Sinceg preserves each™, we can also consider the dynamicsgof
restricted to any.™. Each restricted map has the same properties as above. Let
us fix anyL™ and denote by . the restricted map o to the L™. The critical
set ofg| m consists of the union of intersections of th8 and anothetX-1 which
does not include the™. We denote it by-™"1, which is an irreducible component
of the critical set ofg|.m. By Sk2-equivarianceg|.m preserves each irreducible
component of the critical set gf m. Furthermore the complement of the critical
set ofg|Lm in L™ is Kobayashi hyperbolic.

Finally, let us look at a property of superattracting fixed pointg.ofThe
set of superattracting points, where the derivativg wénishes for all directions,
coincides with the set df%s.

Remark 1. For every k> 1 and every ml < m < k, a restricted map of,g 3 to
any L™ is not conjugate to g, 3.

1.2.4 Examples fork =1and?2

Let us see transposition hyperplanes of$geequivariantfunctiong, and theS;-
equivariantmapgs to make clear whdt™is. In [3] one can find explicit formulas
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and figures of dynamics @y >-equivariant maps in low-dimensions .

Ss-equivariant function g4 in P!
ga([x1: x2]) = DS(—xq + 2%2) : X3(2x1 - %2)] : Pt — P,
C(gs) = {x1 = 0} U{xp = 0} U {x1 = X2} = {0, 1,00} in P,

In this case "transposition hyperplanes” are point®inand L° denotes one of
three superattracting fixed pointsgf.

Ss-equivariant map gs in P2

I
o
C
R

I
S
C
&

I
e
C

C(gs) = {x1
X1 = %} U (X2 = X3} U{xg = x1} in P%.

In this casd.! denotes one of six transposition hyperplaneBanwhich is an ir-
reducible component &(gs). For example, let us fix a transposition hyperplane
{x1 = 0}. Sincegs preserves each transposition hyperplane, we can also consider
the dynamics ofys restricted to{x; = 0}. We denote bygs|;x,—o, the restricted

map ofgs to {x; = 0}. The critical set ofs|x,—o) IN {X1 = 0} = Plis

C(0slix,;=0;)) =1{[0:1:0],[0:0:1],[0:1:1]}.

When we usa 0 after we fix{x; = 0}, L® denotes one of intersections{of = 0}
and another transposition hyperplane, which is a superattracting fixed point of
Uslix,—0) in PL. The set of superattracting fixed pointsgafin P? is

{1:0:0],[0:12:0],[0:0:1],{1:1:1],[1:1:0],[1:0:1],[0:1:1]}.
In generalL® denotes one of intersections of two or more transposition hyper-
planes, which is a superattracting fixed poinggin P2.
1.3 The Fatou sets of thesy, »-equivariant maps

1.3.1 Definitions and preliminaries

Let us recall theorems aboatitically finite holomorphic maps. Let be a holo-
morphic map fronPX to PX. The Fatou set of is defined to be the maximal open
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subset where the iteratéf}n>0 is @ normal family. The Julia set dfis defined
to be the complement of the Fatou setfof Each connected component of the
Fatou set is called a Fatou component. Udte a Fatou component éf A holo-
morphic maph is said to be a limit map ob if there is a subsequen¢é™|y }s-0
which locally converges th on U. We say that a poing is a Fatou limit point if
there is a limit magh on a Fatou componeht such thag € h(U). The set of all
Fatou limit points is called the Fatou limit set. We define dhéimit set E( f) of
the critical points by

E() = ().

j=1n=]

Theorem 2. ([10, Proposition 5.1]) If f is a critically finite holomorphic map
from PK to PX, then the Fatou limit set is contained in thelimit set E( f).

Let us recall the notion of Kobayashi metrics. Idtbe a complex manifold
andKu (x,v) the Kobayashi quasimetric dv,

inf {lal'go : D — M : holomorphicg(0) = x, D¢ (a(aiz) ) =v,ae C}
0

for x € M, v € TyM, z € D, whereD is the unit disk inC. We say thatV
is Kobayashi hyperbolic iKy becomes a metric. Theorem 5 is a corollary of
Theorem 3 and Theorem 4 fer= 1 and 2.

Theorem 3. (a basic result whose former statement can be found in [8, Corol-
lary 14.5]) If f is a critically finite holomorphic function fror®! to P2, then the

only Fatou components of f are attractive components of superattracting points.
Moreover if the Fatou set is not empty, then the Fatou set has full measBte in

Theorem 4. ([5, theorem 7.7]) If f is a critically finite holomorphic map froR?
to P? and the complement of(€) is Kobayashi hyperbolic, then the only Fatou
components of f are attractive components of superattracting points.

1.3.2 Our first result

Let us fix anyk andg = gk4+3. For everym, 2 < m < k, we can apply an argument
in [5] to a restricted map aj to anyL™ because every™ 1 is smooth and because
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everyL™C(g|.m) is Kobayashi hyperbolic. We shall use this argument in Lemma
2, which is used to prove Proposition 1.

Proposition 1. For any Fatou component U which is disjoint fron{d}, there
exists an integer n such that(@) ) intersects with Cg).

Proof: We suppose tha"(U) is disjoint fromC(g) for anyn and derive a con-
tradiction by using Lemma 2 and Remark 3 below. Take any poeirtU. Since
E(g) coincides withC(g), g"(Xp) accumulates t€(g) asn tends toco from The-
orem 2. SinceC(g) is the union of the transposition hyperplanes, there exists a
smallest integem; such thag"(xp) accumulates to some™. Let h; be a limit
map onU such thath;(Xp) belongs to thde™. From Lemma 2 below, the in-
tersection ohy(U) and theL™ is an open set in the™ and is contained in the
Fatou set ofy| m .

We next consider the dynamics@ifm . If there exists an integem, such that
g™ (hy(U) N L™) intersects withC (gl m ), theng(h(U) N L™) intersects with
someL™~L  In this case we can consider the dynamicg|pf,-1. On the other
hand, if there does not exist sunp, then there exists an integen and a limit
maphy on hy(U) n L™ such that the intersection b6f(hi(U) nL™) and some
L™ is an open set in the™ from Remark 3 below. Thus it is contained in the
Fatou set of|_.m. Herem, is smaller thammy. In this case we can consider the
dynamics ofg| m,.

We continue the same argument above. These reductions finally come to some
L! and we use Theorem 3. One can find a similar reduction argument in the proof
of Theorem 5. Consequentlff(xo) accumulates to some superattracting pbfht
So there exists an integesuch thag® senddJ to the attractive Fatou component
which contains the superattracting poltt ThusgS(U) intersects withC(g),
which is a contradiction. ]

Remark 2. Even if a Fatou component U intersects with sorfleahd is disjoint
from any 1™, then the similar thing as above holds for the dynamics in the L
In this case Un L™ is contained in the Fatou set of g and there exists an integer
n such that (U n L™) intersects with Cg|.m).
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Lemma 1. For any Fatou component U which is disjoint froni@} and any point
Xp € U, let h be a limit map on U such thatky) belongs to some™.and does
not belong to any T1. If g"(U) is disjoint from Qg) for every n> 1, then the
intersection of KU ) and the ™ is an open set in the™™

Proof: Let B be the complement &(g). SinceB is Kobayashi hyperbolic and
includesg~(B), g~1(B) is Kobayashi hyperbolic, too. So we can use Kobayashi
metricsKg andKg-1(g). SinceB includesg™*(B),

Kg(X,V) < Kg1(g)(x,V) forall xe g™'(B),ve T4P*.
In addition, sinceg is an unbranched covering frogi'(B) to B,

Kg1() (X V) = Ka(g(x),Dg(v)) forall x e g(B), ve TyP*.

From these two inequalities we have the following inequality
Kg(x V) < Kg(g(x),Dg(v)) forall x e g~1(B), ve TyP.
Since the same argument holds for afiyfrom g~"(B) to B,
Kg(x,V) < Kg(g"(x),Dg"(v)) forall xe g™(B),ve TyP.

Sinceg" is an unbranched covering frobh to g"(U) and B includesg"(U) for
everyn, a sequencéKg(g"(x), Dg"(V))}nso is bounded for alk € U, v e TyPX.
Hence we have the following inequality for any unit vectagsn Ty,U with re-
spect to the Fubini-Study metric Pk,

0< inf, Kg(X0,V) < Kg (X0, Vn) < Kg(g"(X0), Dg"(X0)Vn) < co. (1.1)

That is, the sequend&g(g"(Xo), D" (X0)Vn) In=0 is bounded away from 0 and
uniformly.

We shall choos#;, so thatDg"(xo)vn keeps parallel to the™ and claim that
Dh(xo)v # O for any accumulation vector of v,,. Leth = limp_ g" for sim-
plicity. Let V be a neighborhood df(xp) andy a local coordinate oW so that
w(h(xp)) =0andy(L™NV) c{y = (Y1, Y2, Yk) | Y1 = = = Ykem = O}. In this
chart there exists a constant 0 such that a polydisR(0, 2r) does not intersect
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with any images of transposition hyperplanes which do not includé'th&ince
¥(g"(x0)) converges t@® asn tends toco, we may assume that g"(xo) ) belongs
to P(0,r) for largen. Let {vn}n>0 be unit vectors irWXOPk and{wn}n>0 vectors in
Tl/,(gn(XO))Ck so thatwy, keep parallel t@y(L™) with a same direction and

Dg"(Xo0)Vn = IDG"(Xo)Vnl Dyt (Wp).

So we may assume that the lengthvgf is almost unit for largen. We define
holomorphic mapsgy, from D to P(0, 2r) as

on(2) = w(d"(x0)) + rzw, forze D

and consider holomorphic maps? o ¢, from D to B for largen. Then
(¥~ o ¢n)(0) = g"(%0),

D(y o ¢n) (M (aﬁz)o) = Dg"(Xo)Vn.

Supposedh(xp)v = 0, thenDg"(xp)v converges t® asn tends toco and so does
Dg"(%o)Vn. By the definition of Kobayashi metric we have that

n
< IDg (er)vnI

Kg(g"(x0), Dg"(x0)Vn) — 0 asn— .

Since this contradicts (1), we ha@h(xg)v # 0. This holds for all directions
which are parallel tg/(L™). Consequently the intersectioniufU) and theL™is
an open set ih™. O

Remark 3. The similar thing as above holds for the dynamics of any restricted
map. Thus even if a Fatou componehtld) intersects with €g) for some n, the
same result as above holds. Because one can consider the dynamics A the L
when ¢(U) intersects with some"L

Theorem 5. For each k> 1, the Fatou set of the,§ 2-equivariant map g consists
of attractive basins of superattracting fixed points which are intersections of k or
more distinct transposition hyperplanes.
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Proof: This theorem follows from Proposition 1 and Remark 2 immediately. Let
us describe details. Take any Fatou compokkerffrom Proposition 1 there exists
an integeny such thag™(U) intersects wittC(g). SinceC(g) is the union of the
transposition hyperplaneg’(U) intersects with someX-1. By doing the same
thing as above for the dynamics gfestricted to the.*"1, there exists an integer
k-1 such thag™*+"-1(U) intersects with som&*2 from Remark 2. We again
do the same thing as above for the dynamicg astricted to thé.k-2.

These reductions finally come to soinke That s, there exists integemng.», -, N>
such thatg*"-1+-+M2(U) intersects with somé&!. From Theorem 3 there
exists an integen; such thatg™ (gN«tN1+-+"%(U)) contains someé.?. Hence
gktM-1t+M sendsU to the attractive Fatou component which contains the su-
perattracting fixed poirit® in PK. O

1.4 Axiom A and the Sy, ,-equivariant maps

1.4.1 Definitions and preliminaries

Let us define hyperbolicity of non-invertible maps and the notion of Axiom A. See
[6] for details. Letf be a holomorphic map froff* to P andK a compact subset
such thatf (K) = K. LetK be the set of histories ii{ and f the induced home-
omorphism oK. We say thatf is hyperbolic onK if there exists a continuous
decompositioTz = EY 4 ES of the tangent bundle such trﬁﬂE;/s) C E‘,:{%
and if there exists constants>- 0 andA > 1 such that for everp > 1,

|Dﬁ‘(v)| > cA"|v| forallve EYand

IDFM(v)| < ctA " forallv e ES.

Here| - | denotes the Fubini-Study metric &4. If a decomposition and inequal-
ities above hold forf andK, then it also holds fof andK. In particular we say
that f is expanding orK if f is hyperbolic onK with unstable dimensiok. Let
() be the non-wandering set &f i.e., the set of points for any neighborhdddf
which there exists an integarsuch thatf"(U) intersects witHJ. By definition,
Q) is compact and (Q)) = Q). We say thaff satisfies Axiom A iff is hyperbolic
on () and periodic points are dense(n
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Let us introduce a theorem which deals with repelling part of dynamics. Let
f be a holomorphic map frorRX to PX. We define the k-th Julia sék of f to
be the support of the measure with maximal entropy, in which repelling periodic
points are dense. It is a fundamental fact that in dimension 1 the 1st Julla set
coincides with the Julia sek Let K be a compact subset such tHdK) = K.
We say thaK is a repeller iff is expanding orK.

Theorem 6. ([7]) Let f be a holomorphic map oRX of degree at least 2 such
that thew-limit set E( f) is pluripolar. Then any repeller for f is contained iR.J
In particular,

Jk = {repelling periodic points of f

If fis critically finite, thenE( f) is pluripolar. We need the theorem above to
prove our second result.

1.4.2 Our second result

Theorem 7. For each k> 1, the S, 2-equivariant map g satisfies Axiom A.

Proof: We only need to consider thg  >-equivariantmapg for a fixedk, be-
cause argument for aryis similar as the following one. Let us show the statement
above for a fixed by induction. A restricted map afto anyL! satisfies Axiom
A by using the theorem dfritically finite functions (see [8, Theorem 19.1]). We
only need to show that a restricted mamab a fixedL? satisfies Axiom A. Then
a restricted map of to anyL? satisfies Axiom A by symmetry. Argument for a
restricted map off to anyL™, 3 < m <k, is similar as for a restricted map gto
theL2. Let us denote|, 2, (gl 2), andL? by g, O, andP? for simplicity.

We want to show that, > is hyperbolic on()(g|,2) by using Kobayashi met-
rics. If g is hyperbolic o}, then() has a decomposition %,

O =SpuUS1USy,

where E0,1,2 indicate the unstable dimensions. Sifdg) attracts all nearby
points, Sp includes all theL?s and S; includes all the Julia sets a@f 1. We
denote byJ(g|,1) the Julia set oy, 1. Theng is contracting in all directions at
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L% and is contracting in the normal direction and expanding ibh’adirection on
J(gl ). Let us consider a compact, completely invariant subset inC,

S = {xe P?| dist(g"(x),C) - 0 asn — co}.

By definition, we havel, c Sy ¢ S. If g is expanding or§, then it follow that
So = ULY, S; = uJ(g|.1). MoreoverJ, = S, = S holds from Theorem 6 (see
Remark 4 below). Since periodic points are dens&mi_:) andJp, expansion of
gonS implies Axiom A of g.

Let us show thag is expanding orS. Becausef is attracting orC and pre-
servesC, there exists a neighborhodtlof C such thaw is relatively compact in
g~1(V) and the complement &f is connected. We assume oneldfs to be the
line at infinity of P2, By letting B be P2\ V andU one of connected components
of g~(P?\ V), we have the following inclusion relations,

Ucgl(B)eBcC?=P?\LL
BecauseB andU are in a local chart, there exists a consjart 1 such that
Kg(x,V) < pKy(x,v) forall xe U, ve TxC?
In addition, since the magfrom U to B is an unbranched covering,
Ku (% V) = Kg(g(x),Dg(v)) forall xe U, ve TxC?.
From these two inequalities we have the following inequality
Kg(x V) < pKg(g(x),Dg(v)) forall xe g~(B), v e TxC?.
Sinceg preserves, which is contained ig™"(B) for everyn > 1,
Kg(x,V) < p"Kg(g"(x),Dg"(v)) forall xe S, ve T,C2.
Consequently we have the following inequality foe= p~* > 1,
Kg(g"(x),Dg"(v)) = A"Kg(x,v) forall xe S, ve TxC?.

SinceKg(X, V) is upper semicontinuous apdlis continuousKg(x, v) and|v| may
be diferent only by a constant factor. There exists 0 such that

IDg"(x)v| > cA"v| forall xe S, v e T,C2.

Thusg is expanding ors and satisfies Axiom A. O
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Remark 4. Unlike the case when# 1, it does not seem obvious that S being a
repeller implies § = S when k> 2.

Remark 5. From [1, Theorem 4.11] and [9], it follows that the Fatou set of the
Sk.2-equivariant map g has full measure @4 for each k> 1.
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for their useful advice. Particularly in order to obtain our second result, Mae-
gawa’s suggestion to use Theorem 6 was helpful.
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Chapter 2

Symmetries of the Julia sets of
polynomial skew products on G

A polynomial skew product of£? is a regular polynomial map of degree at least
two such that the first component depends only on the first coordinate. The Julia
set of a polynomial skew product can have symmetries, that is, it can be invari-
ant under some linear maps @%. We investigate the structure of the group of
symmetries and give a necessary an@isient condition for the group of symme-
tries to be infinite. We show that, except for two types, polynomial skew products
having the same Julia set are essentially the same. As a corollary, except for two
types, the first Julia set is determined only by the second Julia set.

2.1 Introduction

The Julia sets of any kind of functions or maps can have symmetries. We say
that a Julia set has symmetries if some non-elementary transformations preserve
it. Beardon [2] investigated symmetries of the Julia sets of polynomiads. dtor

a Julia set having symmetries, these symmetries are rotations about some point.
The group of symmetries is infinite if and only if the Julia set is a circle. There
was a problem: when do polynomials have the same Julia set? Beardon [2] gave
an answer to this problem in terms of a functional equation in which symmetries
of the Julia set are used. Finally, Schmidt and Steinmetz [5], and Atela and Hu [1]
solved the problem independently: polynomials having the same Julia set are es-
sentially the same.
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We want to extend these dynamical objects and results in one dimension to
those in higher dimensions. As a first step, we extend these dynamical objects
and results of polynomials 08 to those of polynomial skew products @f.
Although the dynamics of polynomial skew products is complicated in higher di-
mensions, it has many analogies to the dynamics of one-dimensional polynomials.

In section 2.2, we recall the dynamics of a polynomial skew product. In partic-
ular, its vertical Bttcher functions are important for the proofs. After providing
some basic definitions and a proposition, we will deal with the symmetries of
the Julia sets of polynomial skew products. In section 2.3, we show that linear
maps which preserve a Julia set are conjugate to rotation-product maps, and give
a necessary and ficient condition for the group of symmetries to be infinite.

In section 2.4, we deal with the generalized problem: when do polynomial skew
products have the same Julia set? We show that, except for two types, polynomial
skew products having the same Julia set are essentially the same. As a corollary,
except for two types, the first Julia set is determined only by the second Julia set.

2.2 Dynamics of polynomial skew products

We recall the dynamics of polynomial skew products@ which was studied
by Jonsson [4]. A polynomial skew product @f of degreed > 2 is a map of
the form f(z w) = (p(2),q(z,w)), wherep(z) andq(z w) are polynomials of
degreed and wherep(z) = a + O(Z1) andq(z, w) = bw + O,(wd-1). This
definition is equivalent to that in the abstract. For polynomial skew produatel
g, we denote the composition of them by, that is,fg(z, w) = f(g(z w)). We
also denote the-th iterate off by f". A polynomial skew product preserves
the set of vertical lines i€2. In this sense, we often usg(w) instead ofy(z, w).
The restriction off" to a line{z} x C can be viewed as the compositionropoly-
nomials onC, qz, , - - - Gz, 0z(w), wherez, = p"(z). As we will see later, many
dynamical objects and results for iterations of a polynomiaCohave vertical
counterparts iz} x C for a polynomial skew product.

Let f(z,w) = (p(2),q(z, w)) be a polynomial skew product a@?. The first
componentp defines a dynamics on the base sp@ce useful tool in the study
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of the dynamical op is the Green functio,, of p, defined by
Gp(2) = lim d™"log™ [p"(2)!

Let Kp = {Gp = 0} andJp = 0Kp. In this paper we call, the base Julia set of
f. We also have the Green functi@y of f onC?, defined by

Gi(2) = lim d"log* |f"(z,w)],

where|(z,w)| = max|z, |wl} is a norm orC?. DefineG,(w) = G¢(z,w) — Gp(2).
ThenG; is a nonnegative, continuous, and subharmonic functio@.ocet K, =
Kz(f) ={G; = 0}andJ; = J;(f) = dK,(f). ThenK; andJ, are compact. The
functionG; coincides with the Green function f&, with a pole at the infinity. For
zin Kp, w belongs tK; if and only if the orbit{q, , - - - 0z, 0z(W)}n=1 is bounded.
In this paper we call, the vertical Julia set of.

We define three completely invariant sets of the polynomial skew praduct

= Jaxyh %) =[xy

zedp zedp

and Ji(f) = U{z} x J; U U{z} x K,
zeC zedp
where the closure is taken in the 2-dimensional projective spacklence these
sets have the inclusion relatida ¢ Jr = Jp(f) c Ji(f). Heinemann [3] called
Ji the pre-Julia set of. In this paper we call; the Julia set off. In general,
Js is not compact becausk is not continuous irz with respect to the Hausdr
metric. By definition,f extends to a holomorphic map &%. It is known that
J1(f) coincides with the support of the Green curr&ntf the extension of to
P2, and thatl,(f) coincides with the support of the Green meastiveT. In the

study of the dynamics of holomorphic maps on projective spaces, these sets are

called the first and the second Julia sef of

For a polynomiaP of degredal, the dynamics oP near infinity is conjugate to
z — 7% by a Bottcher function. For a polynomial skew product, simild@it@her
functions exist on vertical lines i€2. The following proposition is a modified
version of Jonsson’s result.
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Proposition 2 ([4]). For any polynomial skew product f &@?, where f(z,w) =
(p(2),q(z w)) and gz w) = bw! + O,(Wi-1), and for a constant e= b there
exists R> 0 and, for every z in K, a unique conformal magp, of {w : G;(w) > R}
onto{W : |W| > €%} such that

(i) ¢z(W) =c(w+c,+0(1)) as w— oo,
(ii) loglez(w)| = Gz(w),
(i) @p(z) (G(W)) = (p2(w))?,
where a constant,alepends on z.

We call ¢, the vertical Bttcher function off at z Now we are ready to
investigate the structure of the groups of symmetries of the completely invariant
sets for a polynomial skew product.

2.3 Symmetries of a Julia set

First, let us recall objects and results of symmetries of the Julia sets of polynomials
on C, which was investigated by Beardon [2]. LR{z) = agZ® 4+ ag_1Z1 + - -
+a;1z+ ap be a polynomial of degree > 2 andJp its Julia set. The group of
symmetries of a polynomid? is defined by

Y=%X(P)={oceE: o(J) = Js },

whereE is the set of conformal Euclidean isometries, thaEiss { o(z) = uz+c
. lul = 1}. The centroid oP is defined by

—ad-1
dag

= :
If the solutions ofP(z) = Z arez, 2, -+, 4, then
P(2) =au(z-2)(z-2) (z2-2z) +Z

and so the center of gravity of the poir#iscoincides with. Each symmetryr
is a rotation about the centroid & that is,o(z) = u(z-¢) + ¢ for somey in
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the unit circleSt. We can normaliz& by z — z— ¢ so that the centroid is at the
origin. We say that a polynomial is in normal form if its centroid is at the origin.
For a normalized polynomid®, the group (P) can be identified with a subgroup
of St.

Let us generalize these dynamical objects and results to those of polynomial
skew products. We restrict the symmetries of the Julia sets of polynomial skew
products to ine maps whose first component depends only on the first coordi-
nate. Hence the group of symmetries of the Julia set of a polynomial skew
productf(z,w) = (p(z),q(z w)) is defined by

F=TJ)={yeS:y(J) =},

whereS:{y( z ):( C1Z+ 2 ):|01|=|C4|=1}-

w C3Z+ C4W —+ Cg

Each element o8 is a linear map which preserves the set of vertical line84n
In addition, it preserves the metrics on the base space and on vertical lines. In
the same manner, we can defifgly(f)) andI'(J1(f) N C?). Because the orbits
of points inJz(f) are bounded, it follows that in S preserves)s if and only
if it preservesd,(f). We will see later thay in S preserves); if and only if it
preserves both; (f) N C2 andJ, x C.

Let f(z, w) = (p(2),9(z w)) be a polynomial skew product such that

( p(2) )_( agZ +ag 171 + - +az+ ao )
d(zw) |~ \ bgw® + bg_1 (2WI L + - +by (2 W+ bg(2) )

Note thatby_| (z) is a polynomial of degree at mdsh z. As in the one-dimensional
case, we define the centroid gfby
—bg-1(z
gz - —d 1( )
dby
If the solutions ofg,(w) = W arews, ws, -, Wy, then the center of gravity of
the pointsw; coincides withz. We can normalizef by the conjugation map

(zzw) — (z-¢,w—{;) so that all centroidg and; are at the origin. Before
normalizing the polynomial skew product, we exprésssing the centroidé and

2.
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Proposition 3. For a polynomial skew product(z,w) = (p(z),q(z,w)), any
linear mapy in I can be written as

y( z ):( w(z-0)+¢ )
w vW=02) + 4oz )
for somey, v in St, whereo(z) = u(z-¢) + ¢ belongs ta(p).

proof. Let us denotey(z,w) in T by (o(2),yz(w)). From the one-dimensional
result, it follows thator(z) = u(z- ¢) + ¢ for someu in St. Instead of using the
one-dimensional argument in [2], one can prove the above by a similar argument
as below.

Let us show that there existin St such thaty,(w) = v(w—¢z) + Lo (2)
holds for anyzin J,. Note that the Bttcher functiony, has a relationship with
the centroid; of g,. By combining(i) and (iii ) in proposition 2, we have the
following equation

c(bgw? + bg_1(ZWd + ) = (WA + dew 4 ).

By comparing the second terntg,coincides with-£; and sop,(w) = c(w— ¢, +
o(w)). Next, let us show thag(Js) = J; induces the equatiop,(w) = v(w—

{z) + 4y(z) foranyzin Jp. Sincel, ) coincides withy(Jz), K, coincides

with yz(Kz). ThusG; and Ga(z)yz are the Green functions fd€; for any z in

Jp. From the uniqueness property of Green functi@scoincides withG,,(;)yz.

Thus there exists in St such thabp,(w) = ¢o(2)72(W). Comparing the regular
terms on this equation, it follows that(w) = v(w - {z) + ¢,y for anyzin

Jp. By the uniqueness theorem of holomorphic functions on horizontal lines, the
equation above holds o2?. O

Therefore we can identify = {y,,(zw) = (uz,vw) : y,,(Jf) = J¢} with
{(u,v) € Stx St :y,, € T} for a normalized polynomial skew produtt The
following lemma helps us to investigate the structur& of he proof is similar to
the proof in the one dimensional case, see [2]. Invikdirection, we use vertical
Bottcher functions instead of adB&cher function. Such an argument was used in
the proof of proposition 3.

Lemma 2. Let f(z,w) = (p(2),q(z w)) be a polynomial skew product of degree
d. Then, fory in S,y belongs td’ if and only if fy = y9f holds onC?2.
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Corollary 1. Let f(z

w) = (p(2),q(z,w)) be a polynomial skew product of
degree d. Therf;(Jf) =T'(J(f)) =

T(J(f)nC?) NT(IpxC).

proof. We have already shown th&(Js) = I'(J2(f)). We only have to show

thatT (J) c T(J1(f) nC2) nT(Jpx C). Lety be an element d8 that preserves

Ji. Thenfy = »9f holds onC2. Forzin Kp, J; coincides with the boundary

of the set of points whose second coordinates are bounded under the iterations.
Forzin C\ Kp, J; coincides with the boundary of the set of points whose ratio

of the second coordinates to the first are bounded under the iterations. Hence the
equationfy = y4f implies thaty preserves); (f) n C2. O

Let us give three examples of symmetries of the Julia sets of polynomial skew
products. All of these are in normal form.

Example 1 (polynomial product). Let f(z,w) = (p(2),q(w)) = (Z2+c,w?+
dw) be a polynomial product with,d # 0. Then it follows thal” = X(p) x

£(0) = () : 42 = v = 1.

Example 2 ( polynomial skew product with finite group of symmetries ).Let
f(zw) = (Z,w3 + czw+dZ), ¢, d # 0. Then lemma 2 implies thdt =

((wv) 1 p® = pv =1 = {(1,1), (0,p%), (0% p) forp®=1j.

Example 3 ( polynomial skew product with infinite group of symmetries ).
Let f(z,w) = (2, w? +¢2), ¢ # 0. Then lemma 2 implies th&t= {(u,v) : u =
v? € S1}. It will be proved that f is semi-conjugate ta,w) — (z%,w? + c) by
n(z,w) = (Z, zw) in proposition 4.

Now, let us consider when the group of symmetries is infinite. A polynomial
skew product is conjugate to a map that is in normal form. In addition, it is
conjugate to a map for which the leading termgaindqg, are 1. Hence we may
assume that the polynomial skew product is in normal form and that the leading
terms ofp andq; are both 1 without loss of generality.

Theorem 8. Let f(zw) = (p(z),q(z w)) be a normalized polynomial skew
product of degree d with leading terms ofzp and g(w) beingl. Thenl is
infinite if and only if one of the following holds:
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(i) J¢ is a product of the unit circle and a Julia set J,
(i) J¢ is a product of a Julia setpland the unit circle,

(i) for some integers n, m, and a Julia set J Gn

J = U{z}xz%J.

zest
Moreover,[ is infinite if and only if one of the following holds:
(i) fisa polynomial product and (z) = 2,
(i) fis a polynomial product and @) = w4,

(i) f is semi-conjugate to a polynomial product lyz,w) = (Z",Z"w) for
some integers n and m, andz) = 2.

proof. Each condition implies thdt is infinite. We prove the converse. LEtbe
infinite. We identifyl’ = {y,,(zw) = (uz,vW) : v,,(Jf) = J¢} with {(u,v) €
StxSl:y,, eT}

If T' has only finitely many indferentu’s, then it must have infinitely many
indifferenty’s. Sincel is compact, each vertical Julia sktis a circle. By using
vertical Bodttcher functions, it follows thadj,(w) = cd for somec, # O. By
assumptiong; is equal to 1. Hencé is a productg(w) = we, andJq is the unit
circle.

Assume thafl” has infinitely many indferentu. Sincel is compact,Jp is
a circle, which is equivalent t@ being conjugate ta — Z4. By assumption,
p(z) =~ andJp is the unit circle. Finally, proposition 4 completes the proafi

Proposition 4. Let f(zw) = (2,q(zw)) be a polynomial skew product of
degree d. Then the following are equivalent:

(i) there exist integers n and m such that

o2, 2"W) = Z"%(1,w),

(i) f is semi-conjugate to a polynomial product givenig, w) = (Z", Z"w)
for some integers n and m,
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(iii) T is infinite,
(iv) fr =79f holds for some(z w) = (ez 6w) with |¢| # 1,

(v) there exists integers n, m and a Julia set J®such that

Ji = U{z} x Zn J.

zeSt

proof. Polynomial products satisfy all of these conditions. So we assumd that
is not a polynomial product.
(i) = (i), (iv). The condition(i) implies the following commutative diagram

for n(z,w) = (2", Z"w):
(Z.q(1,w))

C2

o),

c2

(i) = (iii), (iv). Let fo(zzw) = (po(2),qo(w)) be a polynomial product
such thatrfo = fx. Sincefg is product andly, is the unit circle,yo(z,w) =
(uz,w) belongs tol'(fp) for any u in St. A rotation-product map projects
to y(zw) = (u"z u™w) by the semi-conjugacy. The equationfoyo = y0%fo
implies fy = y9f. By lemma 2,y belongs td'(fo). Similarly (iii ) implies (iv)
because (z,w) = (uz w) satisfiesforg = 0% fo for anyu in C.

(i) = (i). We identifyT with {(x,v) € St xS : y,,(3t) = (J¢)}. Note
thatT" has infinitely many indferentu’s. Otherwisel’ has infinitely many in-

C2

differentyv’'s. Thusf is a product from the argument above, which contradicts
the assumption. Sinck is compact, it has aji’s in S*. Fix u in S such that
u" # 1 for any integem # 0. Lemma 2 implies thatj(uz,vw) = v'g(z w).
Therefore, ifq contains the ter@™w/ with a non-zero coficient, thenu andy
are related by! = ™. The relationg/™v4 = 1 andu™Miv3!i = 1 imply
pm(@=1i)-mi(d-l) — 1 - By the property of, m(d —1;) — m;(d - I;) must be 0.
Hence the ratios ahy andd — |; are independent of and so
m mj m
d—l; _d-1I; d-I
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The integersr = d — | andmsatisfy(i). Similarly (ii ) implies(iv) because” # 1
for any integemn # O.

(i) = (v) = (iii). Let J be the Julia set of a polynomig(1,w) onC. Then
(i) implies thatJ, = zn J for zin SL. On the other hand, (v) implies that the linear
maps(z,w) — (u"z,u™w) preservels for anyu in S. ThusT is infinite. i

2.4 Polynomial skew products with same Julia set

In this section we consider when polynomial skew products have the same Julia
set. We give partial answers to this question, which come from one-dimensional
arguments.

Remark 6. Polynomial skew products have the same Julia set if and only if they
have the same second Julia set, because the Julia set or the second Julia set is
determined by each other respectively.

Let us recall Beardon’s answer to the problem: when polynomials have the
same Julia set? We assume that the degrees of the polynomials are at least two.

Theorem 9 ([2]). Let P and Q be polynomials. Them J= Jq if and only if
PQ = o QP holds for some in X.

We can generalize the theorem above to polynomial skew products. The proof
is similar to that of the one-dimensional case. Inwhadirection, we use vertical
Bottcher functions instead of adBcher function. Such an argument will appear
in the proof of theorem 12 below.

Theorem 10. Let f and g be polynomial skew products. Then=J Jg if and
only if fg= ygf holds for some inT.

Let us recall the answer of Schmidt and Steinmetz [5], and Atela and Hu [1]
to the problem above, which will be used to prove our theorem below.

Theorem 11 ([1], [5]). For any Julia set J of a polynomial which is not a circle
or a straight line segment, there exists a polynomial R such that any polynomial
with the Julia set J can be written in the fomnfR¥ for some integer k and in .
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A polynomial P is conjugate t@ — 24 if and only if Jp is a circle. A polyno-
mial P is conjugate to a Chebyshev polynomial if and onlygfis a straight line
segment. By combining these results, it follows that polynomials having the same
Julia set are essentially the same.

We generalize the theorem above to that of polynomial skew products. The
proof is similar to the proof in the one-dimensional case.

Theorem 12. Let f and g be polynomial skew products. fcbincides with ¢
and if its base Julia set is not a circle or a straight line segment, tHer- fyg™
holds for some integers m andy in T’

proof. We may assume th&{z,w) = (p(z),q(z,w)) andg(z,w) = (r(z), s(z,w))
are in normal form. First, we show that if dég= degg, thenf = yg holds for
somey in I'. From theorem 11, it follows thas = o holds for somer(z) = uz

in X. Let us denote the vertical@tcher function off atz by cp;. SinceK(f)

coincides withK,(g), the Green function of for K,(f) coincides with that of.

ThUS(p; = spJ holds for somesin S2. Proposition 2 implies that

Ppiy (W) = (¢2(W)? and ¢, (s2(W)) = (¢F(W))".
Thus it follows thatpy; Gz = sy (5 S, that is,
o(dz(w) +0(1)) = s'e(s;(w) +0(1)),

where the constantsande are determined by the leading termsjpands;. Since
s = ¢, it follows that£s? = s?-1. Henceg, = vs; holds for anyzin Jp, where
v = %1 belongs toS!. By the uniqueness theorem of holomorphic functions
on horizontal linesg(z,w) = vs(z,w) holds onC?. Henceg = yf holds for
y(zw) = (uz,bw) inT.

Next, from theorem 11, there exists a polynonRaduch thatp = o,R™ and
r = o0»R"holds for some integers, nando1, o2 in .. Hence ded" = degp" =
degR" and de@™ = degr™ = degR™. The argument above then completes
the proof. O

Corollary 2. For polynomial skew products whose base Julia sets are not a circle
or a straight line segment, the first Julia set i3 uniquely determined by the
second Julia seta)
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