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Abstract. Let P (S) denote the space of projective structures on a closed surface
S. It is known that the subset Q(S) � P (S) of projective structures with quasi-
Fuchsian holonomy has in�nitely many connected components. In this paper, we
investigate the con�guration of these components. In particular, we show that
the closure of any exotic component of Q(S) intersects the closure of the standard
component of Q(S). As a consequence, Q(S) has connected closure in P (S). We
also mention the complexity of the boundary of the quasi-Fuchsian space.

1. Introduction

Let S be an oriented closed surface of genus g > 1. A projective structure on S

is a maximal system of local coordinates modeled on the Riemann sphere bC, whose
transition functions are M�obious transformations. For a given projective structure
on S, we have a pair (f; �) of a local homeomorphism f from the universal covereS of S to bC, called a developing map, and a group homomorphism � of �1(S)
into PSL2(C), called a holonomy representation. Let P (S) denote the space of all
(marked) projective structures on S, and let V (S) denote the space of all conjugacy
classes of representations of �1(S) into PSL2(C). Holonomy representations give a
mapping hol : P (S) ! V (S), which is called the holonomy mapping. It is known
that the map hol is a local homeomorphism ([13]). The quasi-Fuchsian space QF (S)
is the subspace of V (S) consisting of faithful representations whose holonomy images
are quasi-Fuchsian groups.
In this paper, we investigate the subset Q(S) = hol�1(QF (S)) of P (S). We say an

element of Q(S) is standard if its developing map is injective; otherwise it is exotic.
The set of standard projective structures with �xed underlying complex structure is
well known as the image of the Teichm�uller space under Bers embedding (see [5]).
On the other hand, the existence of exotic projective structures was �rst shown by
Maskit [21]. More investigations of exotic projective structures are found in [11],
[12], [13], [25], [30] and [32]. As we shall see in Proposition 2.3, each connected
component of Q(S) is biholomorphically isomorphic to QF (S). Moreover, as a
consequence of the result of Goldman [12], the connected components of Q(S) are
in one to one correspondence with the set MLZ(S) of integral points of measured
laminations (see 2.4 for precise de�nition). We denote by Q� the component of
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Q(S) corresponding to � 2 MLZ(S), where Q0 is the component consisting of all
standard projective structures.
Recently McMullen [25, Appendix A] discovered the next phenomenon.

Theorem 1.1 (McMullen). There exists a sequence of exotic projective structures

which converges to an element of @Q0.

This phenomenon deeply depends on the following phenomenon in the theory of
Kleinian groups: There is a sequence of quasi-Fuchsian groups whose algebraic limit
is properly contained in the geometric limit. Such a sequence of quasi-Fuchsian
groups used in the proof of Theorem 1.1 is essentially constructed in Anderson and
Canary [2]. Related topics can be found in [7], [8] and [18].
Theorem 1.1 brings up naturally the following questions;

(1) Can we characterize the points on @Q0 which are limits of exotic projective
structures?

(2) Can we characterize how a sequence of exotic projective structures can converge
to a point of @Q0?

As for the �rst question, we �rst remark that the holonomy image of the limit
projective structure constructed in Theorem 1.1 is a regular b-group. Moreover, we
will show that any element of @Q0 whose holonomy image is a degenerate group
without accidental parabolics can not be an accumulation point of exotic projective
structures (Corollary 3.5). This result has been announced by Matsuzaki already.
We discuss this topic in Section 3.
In this paper, we are mainly concerned with the second question. Our �rst main

result shows that there exists a sequence in any exotic component Q� which con-
verges to a point of @Q0.

Theorem A. For any � 2 MLZ(S), we have Q0 \Q� 6= ;. Especially, the closure

of Q(S) in P (S) is connected.

The proof depends on the following observation: For a converging sequence of
exotic projective structures, what component of Q(S) the sequence is contained is
closedly related to how the algebraic limit is contained in the geometric limit of
corresponding holonomy representations. In Section 5, we develop a technique to
construct some sequences of representations with the same algebraic limit but with
mutually distinct geometric limits. Using this technique, we can extend Theorem A
to the following form.

Theorem B. For any �nite set f�igmi=1 of MLZ(S) satisfying i(�j; �k) = 0 for all

j; k 2 f1; : : : ;mg, we have Q0 \ Q�1 \ � � � \ Q�m 6= ;. Where i(�; �) denotes the

geometric intersection number.

Since the holonomy mapping hol : P (S) ! V (S) is a local homeomorphism,
the complexity of Q(S) at @Q0 is inherited by the complexity of @QF (S). In fact,
Theorem 1.1 implies that the closure of QF (S) in V (S) is not a manifold with
boundary (Theorem A.1 in [25]). This shows the advantage of consideration of
projective structures to investigate the quasi-Fuchsian space. As a consequence of
Theorem B, we obtain the following
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Theorem C. For any positive integer n 2 N, there exists a point [�] of @QF (S)
such that U \QF (S) consists of more than n components for any su�ciently small

neighborhood U of [�].

Theorem A and B can be viewed as the projective structure anlogues of the
works of Anderson and Canary [2] and Anderson, Canary and McCullough [3] in
characterizing when components of the set of discrete faithful representations of
�nitely generated group G into PSL2(C) have intersecting closures. Theorem C
also can be viewed as the analogue of their work, while Theorem C describe how
the closure of a unique component of the set of discrete faithful representations
intersects itself.
This paper is organized as follows: In Section 2, we provide detailed de�nitions

and basic properties of the spaces and maps with which we will be concerned. In
Section 3, we investigate the relationship between sequences of exotic projective
structures and algebraic and geometric limits of their holonomy representations.
Section 4 and Section 5 are devoted to the proofs of Theorem A and Theorem B,
respectively.

Acknowledgements. The author would like to express his gratitude to Hiroshige
Shiga and Katsuhiko Matsuzaki for their encouragement and useful suggestions.
He also appreciates the referee's valuable comments on the previous manuscript of
this paper.

2. Notation and basic facts

A Kleinian group G is a discrete subgroup of PSL2(C), which acts on the hyper-

bolic space H3 as isometries, and on the sphere at in�nity S2
1 = bC as conformal

automorphisms. The region of discontinuity 
(G) is the largest open subset of bC
on which G acts properly discontinuously, and the limit set �(G) of G is its compli-

ment bC� 
(G). The quatient manifold NG = H3 [ 
(G)=G is called the Kleinian
manifold of G. A quasi-Fuchsian group is a Kleinian group whose limit set is a
Jordan curve and which contains no element interchanging the two components of
its region of discontinuity. A quasi-Fuchsian group is obtained by a quasi-conformal
deformation of a Fuchsian group.

2.1. Beltrami di�erentials. For a given Kleinian group G with 
(G) 6= ;, a

measurable function � on bC is called a Beltrami di�erential for G if

�(g(z))g0(z) = �(z)g0(z)

holds for a.e. z 2 bC and for all g 2 G. The space of all Beltrami di�erentials � for G
whose essential sup-norm satisfying jj�jj1 < 1 is denoted by Belt(G)1. For a given

element � 2 Belt(G)1, there exists a unique quasi-conformal map w : bC! bC satisfy-
ing the Beltrami equation w�z = �wz and �xing 0; 1 and 1. Throughout this paper,
this normalized quasi-conformal map with the Beltrami coe�cient � will be denoted
by w�. For more information about quasi-conformal map, see Lehto-Virtanen [20]
for example. The quasi-conformal map w� induces a group isomorphism �� of G
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into PSL2(C) satisfying w� � g = ��(g) � w� for all g 2 G. For a G-invariant open
set U � 
(G), we denote by Belt(U;G)1 the subset of Belt(G)1 consisting of all
elements with support in U .

2.2. Teichm�uller space. Let S be an oriented closed surface of genus g > 1. The
Teichm�uller space T (S) consists of pairs (f;X), where X is a Riemann surface and
f : S ! X is an orientation preserving di�eomorphism. Two pairs (f1; X1) and
(f2;X2) represent the same point in T (S), if there is a holomorphic isomorphism
h : X1 ! X2 such that h � f1 is isotopic to f2. It is known that the space T (S) is a
3g � 3 dimensional complex manifold, di�eomorphic to a cell.
There is another but equivalent de�nition of the Teichm�uller space. We �x a

Fuchsian group � acting on the upper half plane H = fz 2 C : Imz > 0g such that
S = H=�. Two elements �; � 2 Belt(H;�)1 are called equivalent if w�j@H = w� j@H,
or equivalently, �� = ��. The Teichm�uller space T (�) (or T (S)) is the space of
equivalence classes [�] of elements � in Belt(H;�)1. For each t = [�] 2 T (S), let �t
denote the quasi-Fuchsian group ��(�), whose region of discontinuity is a union of
Ht = w�(H) and H�

t = w�(H
�), where H� = fz 2 C : Imz < 0g is the lower half

plane. The quasi-conformal map w�jH : H ! Ht descends to a quasi-conformal
map gt : S = H=�! St = Ht=�t, such that the pair (gt; St) represents t 2 T (S).

2.3. The space of projective structures. For a given projective structure on

S, we obtain a local homeomorphism f : eS ! bC by lifting the structure to the
universal cover eS of S and continuing the coordinates analytically. This map f is
called a developing map of the projective structure. A developing map f induces
a group homomorphism � : �1(S) ! PSL2(C) satisfying f � g = �(g) � f for all
g 2 �1(S), which is called a holonomy representation. This pair (f; �) is called a
projective pair. Note that a projective structure determines a projective pair (f; �)
uniquely up to the action of PSL2(C); the action is de�ned by

(f; �) 7! (A � f;A � � � A�1)

for A 2 PSL2(C).
For each t 2 T (S), let B2(Ht;�t) denote the space of holomorphic quadratic

di�erentials for �t onHt, whose element is a holomorphic function ' onHt satisfying

'((z)) 0(z)2 = '(z)

for all  2 �t; z 2 Ht. The space B2(Ht;�t) is a 3g � 3 dimensional complex vector
space.
A projective structure determines naturally its underlying complex structure. The

set of all projective structures with an underlying complex structure St = Ht=�t
is parametrized by B2(Ht;�t) as follows. For any projective structure on St, let

f : Ht ! bC be its developing map. Then we assign an element S(f ) 2 B2(Ht;�t)
to this projective structure, where S(f ) is the Schwarzian derivative of f de�ned by
S(f) = (f 00=f 0)0� 1=2(f 00=f 0)2. Conversely, for any element ' 2 B2(Ht;�t), there is

a holomorphic map f : Ht ! bC satisfying S(f ) = ', which descends to a projective
structure on St. Here and hereafter, with this identi�cation, we regard a pair (t; ')
as a marked projective structure, where t 2 T (S) and ' 2 B2(Ht;�t).
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Let P (S) denote the holomorphic cotangent bundle over T (S) with projection � :
P (S) ! T (S). Then, each �ber ��1(t) over t 2 T (S) is identi�ed with B2(Ht;�t).
We regard P (S) as the space of marked projective structures. For any projective

structure (t; ') 2 P (S), let ft;' : Ht ! bC denote its developing map and ��t;' :
�t ! PSL2(C) its holonomy representation satisfying ft;' �  = ��t;'() � ft;' for any
 2 �t. A representation �t;' = ��t;' ��� of �1(S) = � into PSL2(C) is also called a
holonomy representation, where � 2 Belt(H;�)1 is a representative of t 2 T (S). It
is known that, for any projective structure (t; '), the holonomy image �t;'(�1(S)) is
a non-abelian subgroup of PSL2(C).
A sequence f�ng of representations of �1(S) into PSL2(C) is said to converge

algebraically to � if �n(g) converges to �(g) in PSL2(C) for any g 2 �1(S). Let V (S)
denote the space of all conjugacy classes [�] of representations � : �1(S)! PSL2(C)
such that �(�1(S)) is non-abelian. A sequence f[�n]g in V (S) converges to [�] 2 V (S)
if there is a sequence of representatives of f[�n]g which converges algebraically to a
representative of [�]. It is known that V (S) is 6g� 6 dimensional complex manifold
(see, for example, [23, Theorem 4.21]). The holonomy map

hol : P (S)! V (S)

is de�ned by hol(t; ') = [�t;']. The basic fact is that the holonomy map is a holo-
morphic local homeomorphism ([13], see also [9] and [14]).

2.4. Grafting. Let S denote the set of homotopy classes of non-trivial simple closed
curves on S. By abuse of notation, we also denote a representative of C 2 S by
C. Let MLZ(S) denote the set of integral points of measured laminations on S.
Namely, each element � 2 MLZ(S) is written as a formal summation

P
njCj , where

fnjg are positive integers and fCjg are mutually distinct disjoint elements in S. We
shall contain the \zero" measured lamination in MLZ(S).
Let X be a Riemann surface marked by S. A canonical projective structure on

S is provideded by the Fuchsian uniformization X = H=G, where H is the upper
half plane and G is a Fuchsian group acting on H. For any element � =

P
njCj

of MLZ(S), we can construct a new projective structure on S by cutting X along
each Cj and \grafting" some projective annulus at each cut locus. More precisely,
let lX(Cj) denote the hyperbolic length of geodesic representative of Cj on X and
let

Aj = (C� iR+)=


z 7! elX(Cj)z

�
be the annulus equipped with natural projective structure. Then new projective
structure on S is obtained by cutting X along geodesic representatives of each Cj
and inserting Aj for nj-times. This new projective structure is said to be obtained
by grafting along �. (See [12], [17], [25] and [32] for more information.)
We explain this grafting operation in the contex of complex analysis, for our later

use. The following construction is due to Maskit [21] and our explanation is based on
that of Gallo [11]. An element (t; ') 2 P (S) is called a Fuchsian projective structure

if ft;' is injective and �t;'(�1(S)) is a Fuchsian group.
For simplicity, we �rst explain for the case that � 2 MLZ(S) is a simple closed

curve with weight 1. Take a Fuchsian projective structure (t; ') and an element
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C 2 S. We denote the holonomy image �t;'(�1(S)) by G. We may assume that
the image of developing map ft;'(Ht) coincides with the upper half plane H, and
that the imaginary axis iR+ projects onto C via the covering map H ! St = H=G.
Choose � 2 (0; �=2) so that B� = fz 2 H : �=2 � � < arg z < �=2 + �g projects
onto a collar about C in St. Take a C

1 homeomorphism

v : [�=2� �; �=2 + �]! [�=2� �; 5�=2 + �]

satisfying v(�=2 � �) = �=2 � �, v(�=2 + �) = 5�=2 + �, and v0(�=2 � �) =

v0(�=2+�) = 1. We now de�ne a local homeomorphism W : H! bC as follows. Let
g 2 G be a generator for the stabilizer of iR+ in G and set D� =

S
h2G=hgi h(B�).

Let W (z) = z for z 2 H�D�, and W (z) = reiv(�) for z = rei� 2 B�. For z 2 h(B�)
with some h 2 G, letW (z) = h�W �h�1(z). One can easily verify thatW �h = h�W
for all h 2 G and hence that � = W�z=Wz 2 Belt(H; G)1.
Now let �̂ 2 Belt(Ht;�t)1 be the pull back f�t;'(�) of � via developing map ft;',

which is de�ned by

f�t;'(�) = (� � ft;')f 0t;'=f
0
t;':

Let � 2 Belt(H;�)1 be a representative of t 2 T (S). Let t0 2 T (S) be the equivalent

class of the Beltrami coe�cient � 0 of the quasi-conformal map w�̂�w� : bC! bC. Since
W � ft;' � (w�̂)

�1 is locally conformal on Ht0 = w�̂(Ht), we can take its Schwarzian
derivative '0 2 B2(Ht0;�t0). Now we obtain a new projective structure (t0; '0) with
surjective developing map ft0;'0 which commutes the following diadram;

H
w����! Ht

ft;'
���! bC

id

??y ??yw�̂ ??yW
H

w�0���! Ht0
ft0;'0
���! bC:

Moreover one can see that �t0;'0 = �t;' from the fact that W � h = h �W for all
h 2 G. It is shown in [11, Lemma 3.1] that the element (t0; '0) 2 P (S) does not
depend on the choice of �, v, and �. The projective structure (t0; '0) is said to be
obtained from (t; ') by grafting along C and is denoted by GrC(t; ').
An important remark is that, for (t; ') = GrC(t; '), the subset f

�1
t0;'0(�(G))=�t0

in St0 consists of two simple closed curves each of which is homotopic to C (see
[12]). This can be seen as follows: We �rst note that the limit set �(G) of G =
�t0;'0(�1(S)) coincides with R [ f1g. Since f�1t;' (B�) projects onto a collar about

C in St via the covering map Ht ! St, w�̂(f
�1
t;' (B�)) is also projected onto a collar

about C in St0 via the covering mapHt0 ! St0. Since the developing map ft0;'0 maps

w�̂(f
�1
t;' (B�)) onto the multi-sheeted domain fz 2 bC : �=2�� < arg z < 5�=2+�g,

w�̂(f
�1
t;' (B�)) \ f

�1
t0;'0(�(G)) consists of two connected components each of which is

projected onto a simple closed curve homotopic to C.
The grafting operation can be naturally extended to MLZ(S). For example, if

� = nC 2 MLZ(S), we only have to change v into v : [�=2 � �; �=2 + �] !
[�=2��; 2n�+�=2+�]. Let Gr�(t; ') denote the projective structure obtaind from
(t; ') by grafting along � 2 MLZ(S).
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As we have observed, the grafting operator does not change holonomy representa-
tions. Conversely, Goldman [12] showed that all projective structures with Fuchsian
holonomy are obtained by grafting.

Theorem 2.1 (Goldman). For any Fuchsian projective structure (t; '),

hol�1(hol(t; ')) = fGr�(t; ')g�2MLZ(S):

2.5. Quasi-conformal deformations of projective structures. Let AH(S) de-
note the subset of V (S) consisting of discrete faithful representations. The quasi-

Fuchsian space QF (S) is the subset of AH(S) consisting of faithful representations
whose images are quasi-Fuchsian groups. It is known that AH(S) is a closed sub-
set in V (S)(see [15, Theorem 1]) and that the interior intAH(S) of AH(S) coin-

cides with QF (S)(see [31, Theorem A]). (It is conjectured that QF (S) = AH(S),
which is so called Bers-Thurston conjecture.) We denote the subset hol�1(AH(S))
of P (S) by K(S) and hol�1(QF (S)) by Q(S). Then, since the holonomy map
hol : P (S)! V (S) is a local homeomorphism, one obtains intK(S) = Q(S).
We now introduce the notion of a quasi-conformal deformation of a projective

structure with quasi-Fuchsian holonomy, which was developed by Shiga and Tani-
gawa in [30]. Fix an element (t; ') 2 Q(S) and denote its holonomy image �t;'(�1(S))
by G. For each � 2 Belt(G)1, we take the pull back �̂ = f �t;'(�) 2 Belt(Ht;�t)1
of �, which determines a new point t0 2 T (S) in the same manner described in
2.4. Since w� � ft;' � (w�̂)

�1 is locally conformal on Ht0, we can take its Schwarzian
derivative '0 2 B2(Ht0 ;�t0). Now we obtain a new projective structure (t0; '0), a
quasi-conformal deformation of (t; '), satisfying(

ft0;'0 = w� � ft;' � (w�̂jHt)
�1 : Ht0 ! bC;

�t0;'0 = �� � �t;' : �1(S)! PSL2(C);

where �� is the group isomorphism of G into PSL2(C) induced by w�. We de�ne a
map e	t;' : Belt(G)1 ! P (S)

by e	t;'(�) = (t0; '0). Two elements �; � 2 Belt(G)1 are said to be equivalent if
�� is PSL2(C)-conjugate to �� . The quotient space of Belt(G)1 by this equivalent
relation can be naturally identi�ed with the quasi-Fuchsian space QF (S).

Lemma 2.2 (cf. [30]). The map e	t;' descends to a map

	t;' : QF (S)! P (S):

Proof. For any equivalent two elements �; � 2 Belt(G)1, we will show that e	t;'(�) =e	t;'(�). The same argument in [10] reveals that there is a path c� ; � 2 [0; 1] in
Belt(G)1 jointing � and � and contained in the equivalence class [�] of �. Note that

hol � e	t;'(c�) is constant on � 2 [0; 1]. Since the map hol is a local homeomorphism,

it implies that e	t;'(c�) is constant on � 2 [0; 1] and that e	t;'(�) = e	t;'(�).

Using the map in Lemma 2.2, we can show the following
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Proposition 2.3. For any connected component Q of Q(S),

holjQ : Q ! QF (S)

is a biholomorphic map. Moreover, 	t;' = (holjQ)�1 holds for any (t; ') 2 Q.
Therefore the map 	t;' does not depend on the choice of (t; ') 2 Q.

Proof. To show that holjQ is biholomorphic, it su�ces to show that holjQ is bijec-
tive, since the map hol is a local biholomorphism. Fix an element (t; ') 2 Q. Note
that 	t;'(QF (S)) � Q, since QF (S) is connected and 	t;' is continuous. It can be
easily seen by de�nition that (holjQ)�	t;' is the identity map of QF (S). Therefore
we only have to show that 	t;' � (holjQ) is the identity map of Q. To this end, we
will show that a subset

Q0 = f(s;  ) 2 Q : (s;  ) = 	t;' � hol(s;  )g

of Q is non-empty, open and closed. Since 	t;' � (holjQ) is cotinuous, Q
0 is closed.

Moreover, 	t;'([�t;']) = (t; ') implies (t; ') 2 Q0, and hence Q0 6= ;. Take
(s;  ) 2 Q0 and its neighborhood U in Q such that holjU is injective. Let V be a
neighborhood of (s;  ) contained in U and satisfying 	t;' � hol(V ) � U . Note that,
for any (s0;  0) 2 V , hol(	t;' � hol(s

0;  0)) = (hol � 	t;') � hol(s
0;  0) = hol(s0;  0).

Since both 	t;' �hol(s0;  0) and (s0;  0) are contained in U and holjU is injective, we
have 	t;' � hol(s0;  0) = (s0;  0) for all (s0;  0) 2 V . Therefore Q0 is open.

2.6. Components of Q(S). Take a Fuchsian projective structure (t; '). By Propo-
sition 2.3, each connected component of Q(S) contains a unique projective structure
whose holonomy representation coincides with [�t;']. But, from Theorem 2.1, these
projective structures are written in the form fGr�(t; ')g�2MLZ(S). Therefore we
obtain the decomposition of Q(S) into its connected components;

Q(S) =
a

�2MLZ(S)

Q�;

where Q� is the component containing Gr�(t; '). Note that this su�x does not de-
pend on the choice of Fuchsian projective structure (t; '). Recall that an element of
Q(S) is called standard if its developing map is injective; otherwise exotic. Since any
element of Q� is obtained from Gr�(t; ') by a quasi-conformal deformation, one can
easily see that Q0 is the component consisting of all standard projective structures,
and that any element of Q�(� 6= 0) is an exotic projective structure. Note that, since
Gr�(t; ')(� 6= 0) has surjective developing map, any exotic projective structure has
surjective developing map. Moreover, we can characterize the component of Q(S)
in which an element (t; ') of Q(S) is contained, as follows.

Lemma 2.4. Take an element (t; ') 2 Q(S) and denote �t;'(�1(S)) by G. Then

(t; ') is contained in a component Q� corresponding to � =
P
njCj 2 MLZ(S) if

and only if the subset f�1t;' (�(G))=�t of St consists of disjoint unions of 2nj simple

closed curves each of which is homotopic to Cj for all j.
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3. Exotic projective structures and limits of representations

In this section, we investigate the relationship between sequences of exotic projec-
tive structures and algebraic and geometric limits of their holonomy representations.
We begin with the de�nition of geometric convergence of Kleinian groups.

De�nition 3.1. Let X be a locally compact Hausdor� space. We denote by C(X)
the set of all closed subset of X. A sequence fAng of closed subsets of X converges
to a closed subset A � X in the Hausdor� topology on C(X) if every element x 2 A is
the limit of a sequence fxn 2 Ang and if every accumulation point of every sequence
fxn 2 Ang lies in A. A sequence of Kleinian groups fGng is said to converge

geometrically to a group bG if fGng converges to bG in the Hausdor� topology on
C(PSL2(C)).

We recall some basic facts on the convergence of representations. Let f�ng be
a sequence of discrete faithful representations of �1(S) into PSL2(C) which con-
verges algebraically to �1. Then �1 is also a discrete faithful representation (see
[15, Theorem 1]). Moreover, there is a subsequence of fGn = �n(�1(S))g converging

geometrically to a kleinian group bG which contains G1 = �1(�1(S)) (see [16, propo-
sition 3.8]). The following theorem is due to Kerckho� and Thurston [18, Corollary
2.2].

Theorem 3.2 (Kerckho�-Thurston). Let f�n : �1(S) ! PSL2(C)g be an alge-

braically convergent sequence of faithful representations whose images fGn = �n(�1(S))g

are quasi-Fuchsian groups. Assume that fGng converges geometrically to bG. Then,
f�(Gn)g converges to �( bG) in the Hausdor� topology on C(bC).
The following Lemma 3.3 plays an important role in this paper, especially in the

proof of Theorem A. Since the situation under which we consider Lemma 3.3 is
somewhat complicated, we �rst describe it:
Let f(tn; 'n)g be a sequence in Q(S) converging to an element (t; ') in K(S).

Take a sequence of projective pairs f(ftn;'n ; �tn;'n)g and a projective pair (ft;'; �t;')
such that f�tn;'ng converges algebraically to �t;'. Put Gn = �tn;'n(�1(S)) and
G1 = �t;'(�1(S)). Moreover, we assume that fGng converges geometrically to

a Kleinian group bG. Since ftng converges to t in T (S), one can take a smooth
quasi-conformal map !n : St ! Stn such that !n � gt is homotopic to gtn, where
gt : S ! St and gtn : S ! Stn are markings for t and tn respectively, and that the
maximal dilatation

1 + jj(!n)�z=(!n)zjj1
1� jj(!n)�z=(!n)zjj1

of !n tends to 1 as n!1.
In this situation, we have the following

Lemma 3.3. The sequence f!�1n (f�1tn;'n(�(Gn))=�tn)g converges to f�1t;' (�( bG))=�t
in the Hausdor� topology on C(St).

Proof. We �rst observe that fftn;'ng converges to ft;' locally uniformly in Ht. Since
f(tn; 'n)g converges to (t; '), ftng converges to t in T (S) and f'ng converges to
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' locally uniformly in Ht. Therefore, one can take a sequence of projective pairs
f( �ftn;'n; ��tn;'n)g and a projective pair f( �ft;'; ��t;')g such that f �ftn;'ng converges to
�ft;' locally uniformly in Ht. Chose an element An 2 PSL2(C) so that �ftn;'n =
An � ftn;'n holds. Then, since both f�tn;'ng and f��tn;'n = An � �tn;'n � An

�1g are
algebraically convergent sequences, fAng converges to some element A 2 PSL2(C).
Therefore, fftn;'ng also converges to ft;' locally uniformly in Ht.
Take a sequence of lifts e!n : Ht ! Htn of !n which converges to the identity

locally uniformly in Ht. Then fftn;'n � e!ng also converges to ft;' locally uniformly

in Ht. Since, from Theorem 3.2, f�(Gn)g converges to �( bG) in the Hausdor�

topology on C(bC), one can easily check that fe!�1n (f�1tn;'n(�(Gn)))g converges to

f�1t;' (�( bG)) in the Hausdor� topology on C(Ht). This implies that the sequence

f!�1n (f�1tn;'n(�(Gn))=�tn)g converges to f
�1
t;' (�( bG))=�t in the Hausdor� topology on

C(St).

Remark. The above lemma implies that the shape of f�1t;' (�( bG))=�t restricts the

shape of f�1tn;'n(�(Gn))=�tn , and hence the component of Q(S) in which (tn; 'n) is
contained by Lemma 2.4. This is the fundamental idea of the proof of Theorem A.

A Kleinian groupG is called geometrically �nite if it has a �nite-sided fundamental
domain in H3. A Kleinian group G is said to be a b-group if it has the only one
simply connected invariant component of 
(G), which is denoted by 
0(G). A
geometrically �nite b-group is said to be regular. A degenerate group is a b-group
with 
0(G) = 
(G). For a b-group G, take a Riemann mapping f : 
0(G) ! H,
which induce a group isomorphism �f : G ! fGf�1. An accidental parabolic

element g in G is a parabolic element such that �f(g) is a loxodromic element in
fGf�1.
Let U(S) denote the subset of P (S) consisting of all projective structures whose

developing maps are injective. Then U(S) is closed in P (S), containing Q0, and
contained inK(S). Since intAH(S) = QF (S), one can easily see that intU(S) = Q0,
and that @Q0 � @U(S). Note that, for an element (t; ') in @U(S), its holonomy
image G = �t;'(�1(S)) is a b-group with an invariant component ft;'(Ht) = 
0(G)
(see [19]).
Using Lemma 3.3, we can characterize a sequence of exotic projective structures

converging to an element of @U(S) by algebraic and geometric limits of their holo-
nomy representations.

Proposition 3.4. In the same situation in Lemma 3.3, with additional assumption

that (t; ') 2 @U(S), the followings are equivalent;

(1) (tn; 'n) are exotic projective structures for large enough n,

(2) 
0(G1) \ �( bG) 6= ;.

Remark. The \(2)) (1)" part of Proposition 3.4 is due to McMullen [25]. In fact,
he constructs a sequence of representations satisfying (2), and apply the \(2)) (1)"
part to show Theorem 1.1. Later, we will explain his arguments more precisely.

Proof of Proposition 3.4. Recall that any exotic projective structure has surjective
developing map. Hence, a projective structure (tn; 'n) 2 Q(S) is exotic if and only
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if its developing map ftn;'n is surjective. Therefore the condition (1) is equivalent
to the condition that f�1tn;'n(�(Gn))=�tn 6= ; for large enough n. Using Lemma 3.3,

it turns out to be equivalent to the condition f�1t;' (�( bG))=�t 6= ;. But this condition

is equivalent to the condition ft;'(Ht) \ �( bG) 6= ;. Since ft;'(Ht) = 
0(G1) holds
for (t; ') 2 @U(S), we have completed the proof.

As a consequence of the \(1)) (2)" part of Proposition 3.4, we have the following
assertion due to Matsuzaki (oral communication, see also [23, Section 7.4]).

Corollary 3.5 (Matsuzaki). If a projective structure (t; ') in @U(S) is an accumu-

lation point of exotic projective structures, its holonomy image �t;'(�1(S)) contains
accidental parabolics.

Proof. Assume that there is a sequence of exotic projective structures f(tn; 'n)g
converging to a projective structure (t; ') 2 @U(S) whose holonomy image contains
no accidental parabolics. Then the following theorem due to Thurston (see Ohshika

[27, Corollary 6.1]) implies that the geometric limit bG of fGn = �tn;'n(�1(S))g
coincides with the algebraic limit G1 = �t;'(�1(S)). This contradicts Proposition
3.4.

Theorem 3.6 (Thurston). Let f�ng be a sequence of discrete faithful representa-

tions of �1(S) into PSL2(C) converging algebraically to �1. Assume that Gn =
�n(�1(S)) and G1 = �1(�1(S)) contain no accidental parabolics. Then fGng con-

verges geometrically to G1.

We remark that a b-group with no accidental parabolics is a degenerate group (see
[5]). Therefore Corollary 3.5 implies that an element of @U(S) whose holonomy im-
age is a degenerate group without accidental parabolics can not be an accumulation
point of exotic projective structures. Moreover, we obtain the next corollaries.

Corollary 3.7. The subset of @Q0 of projective structures which can not be accu-

mulation points of exotic projective structures is dense in @Q0.

Proof. A similar argument in [5, p.598] and [24, p.221] reveals that the subset of @Q0

of projective structures whose holonomy images contain no accidental parabolics is
dense in @Q0. Then the assertion follows immediately from Corollary 3.5.

Corollary 3.8. For any t0 2 T (S), there exists a projective structure (t0; ') in

@Q0 whose holonomy image �t0;'(�1(S)) is a regular b-group, such that there is no

sequence of exotic projective structures converging to (t0; ').

Proof. Fix t0 2 T (S) and consider a subspace T = Q0\B2(Ht0;�t0) of B2(Ht0 ;�t0).
The space T is coincident with the image of, so called, the Bers embedding of the
Teichm�uller space into B2(Ht0;�t0) (see [29]). Note that the boundary @T of T in
B2(Ht0 ;�t0) is contained in @Q0 \B2(Ht0;�t0). It is known by McMullen [24] that
the subset @0T � @T of projective structures whose holonomy images are regular
b-groups is dense in @T . Let (t0;  ) be a point in @T such that �t0; (�1(S)) is a
degenerate group and take a sequence f(t0; 'n)g in @

0T converging to (t0;  ). Now
suppose that the assertion were false. Then, by the diagonal argument, one can take
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a sequence of exotic projective structures converging to (t0;  ). This contradicts
Corollary 3.5.

4. The proof of Theorem A

We �rst recall some basic facts of the quasi-Fuchsian space. Take a faithful rep-
resentation � : �1(S) ! PSL2(C) whose image G = �(�1(S)) is a quasi-Fuchsian
group. Then the Kleinian manifold NG = (H3 [ 
(G))=G is homeomorphic to
S � [0; 1] and @NG = 
(G)=G consists of two Riemann surfaces X1 and X2. We

assume that @NG is equipped with the orientation induced from that of bC. Then
@NG = X1 [ X2, combined with markings induced from �, determines a point in
T (S) � T (S), where S denotes S with its orientation reversed. Moreover, this as-
signment induces a holomorphic bijection (see [4]),

qf : T (S)� T (S)! QF (S):

A subset Bt = qf(ftg � T (S)) of QF (S) for some t 2 T (S) is called a vertical

Bers slice. On the other hand, Bt = qf(T (S) � ftg) for some t 2 T (S) is called a
horizontal Bers slice. Note that the bounbary of any vertical Bers slice is contained
in hol(@Q0), while the boundary of any horizontal Bers slice is not.
The mapping class group Mod(S) is the group consisting of isotopy classes of

orientation preserving homeomorphism of S. Recall that Mod(S) acts naturally on
T (S) and on T (S).
We devote the rest of this section to the proof of the following theorem.

Theorem A. For any � 2 MLZ(S), we have Q0 \Q� 6= ;. Especially, the closure

of Q(S) in P (S) is connected.

The second statement can be easily seen from the �rst statement. Hence we
consentrare our attention to the �rst statement.

4.1. Proof for special case. Here, we prove Theorem A for the case that � = C 2
S. Our aim is to show that there exists a sequence in QC which converges to an
element of @Q0. This proceeds as follows.

1. First we review the proof of Theorem 1.1:
Let (u; v) be any pair of Riemann surfaces in T (S)�T (S) and � 2Mod(S) be

the Dehn twist around C. We will see that the sequence f[�n] = qf(�nu; � 2nv)g
converges algebarically to a point [�1] on the boundary of some vertical Bers
slice Bt. Let (t; ') be a point of @Q0 such that hol(t; ') = [�1]. Since the
holonomy map hol : P (S) ! V (S) is a local homeomorphism, one can take
a sequence f(tn; 'n)g in Q(S) converging to (t; ') and satisfying hol(tn; 'n) =
[�n]. For large enough n, (tn; 'n) turns out to be exotic and the proof of
Theorem 1.1 is completed.
We will show that (tn; 'n) is contained in QC for large enough n in the

following steps.
2. Let f(ftn;'n ; �tn;'n)g and (ft;'; �t;') be projective pairs corresponding f(tn; 'n)g

and (t; '), respectively, such that f�tn;'ng converges algebraically to �t;'. LetbG be the geometric rimit of the sequence fGn = �tn;'n(�1(S))g. In Lemma
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4.1, we will see that the subset f�1t;' (�( bG))=�t in St consists of two components
and is contained in an annulus whose core is homotopic to C. Ricall that
f!�1n (f�1tn;'n(�(Gn))=�tn)g converges to f

�1
t;' (�( bG))=�t in the Hausdor� topology

on C(St) by Lemma 3.3. Therefore, one may expect that f�1tn;'n(�(Gn))=�tn
consists of two simple closed curves each of which is homotopic to C for large
enough n. If it were true, (tn; 'n) is contained in QC for large enough n by
Lemma 2.4, and the proof is completed. We justify the above expectation in
the following steps.

3. It is easy to see that all components of f�1tn;'n(�(Gn))=�tn are simple close curves
homotopic to C for large enough n (Lemma 4.2). Hence, all what we have to
show is that any component of f�1tn;'n(�(Gn))=�tn does not join with another
components as n tends to 1.

4. In Lemma 4.3, we will see that any two components of f�1tn;'n(�(Gn))=�tn are
separeted by some annulus whose core is homotopic to C and whose modulus
is larger than m0, where m0 does not depend on n.

5. We will see that the hyperbolic distance between two boundary components of
an annulus in a Riemann surface can be estimated below by using the modu-
lus of the annulus (Lemma 4.4). Hence the hyperbolic distance between any
two components of !�1n (f�1tn;'n(�(Gn))=�tn) is bounded below by some positive
constant L > 0 which does not depends on n. Therefore, one can see that
f�1tn;'n(�(Gn))=�tn consists of two simple closed curves each of which is homo-
topic to C for large enough n, and can complete the proof of Theorem A for
the case that � is a simple closed curve.

We now �ll in the details.

Step 1. Theorem 1.1 is due to McMullen [25, Appendix A]. In our sketch of this
proof, we make use of a variation of Thurston's hyperbolic Dehn surgery theorem,
which is due to Comar [8] (see also [2, Theorem 2.2] and [6]). Related arguments
can be found in [7] and [18]. The \adding twist" technique, discovered by Anderson
and Canary in [2], also plays an important role in this proof.

Sketch of proof of Theorem 1.1. Let bG be a geometrically �nite Kleinian group whose

Kleinian manifold N
bG = (H3 [
( bG))= bG is homeomorphic to S� [0; 1]�C�f1=2g.

The existence of such a Kleinian group bG is guaranteed by Thurston's geometriza-
tion theorem (see [26]). Here, the tubular neighborhood of C � f1=2g corresponds
to the rank two cusp end of N

bG. We �x a basis h; �i for the fundamental group of
the rank two cusp so that  is homotopic to C � f0g and � is trivial in S � [0; 1].
By performing (n; 1) Dehn �lling on the cusp (n 2 N), we obtain a sequence of

representations f�n : bG ! PSL2(C)g which satis�es the following conditions (see
[8]);

� Gn = �n( bG) is a quasi-Fuchsian group,
� The kernel of �n is normally generated by n�,
� fGng converges geometrically to bG, and
� f�ng converges algebraically to the identity representation of bG.
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S

fC
C � f1=2g

C

S � f0g

S � [0; 1]

S � f1g

Figure 1. The wrapping map fC .

Let f0 be the inclusion map S ! S � f1=4g � N
bG and denote by (f0)� the

induced group homomorphism of �1(S) into bG. Then we obtain a sequence of
faithful representations �0n = �n � (f0)� of �1(S) onto quasi-Fuchsian groups Gn.
By modifying �n slightly, if necessary, we may assume that @NGn

is conformally
isomorphic to @N

bG for all n. Then the above representations are expressed as

[�0n] = qf(u; �nv);

where (u; v) 2 T (S)� T (S) is the complex structure on @N
bG combined with trivial

markings, and � 2 Mod(S) is the Dehn twist around C.
Now we add a twist to f0. More precisely, we construct an immersion fC : S ! N

bG

which is homotopic to f0 in S� [0; 1] but not in S� [0; 1]�C�f1=2g in the following
way. Let A be a tubular neighborhood of C in S. Then the map fCj(S�A) is de�ned
by fC(x) = (x; 1=4), and the map fCjA is de�ned so that fC(A) wraps once around
the tubular neighborhood of C � f1=2g, see Figure 1. This immersion fC is called
the wrapping map associated to C.
Again, we obtain a sequence of faithful representations �n = �n � (fC)� of �1(S)

onto quasi-Fuchsian groups Gn, which can be expressed as

[�n] = qf(�nu; � 2nv):

The sequence f�ng converges algebraically to �1 = (fC)�. We denote �1(�1(S)) by
G1. We can show that G1 is a regular b-group and, moreover, that [�1] lies on
the boundary of some vertical Bers slice Bt (see Lemma 4.1(1)). Therefore, there
exists an element (t; ') 2 @Q0 with hol(t; ') = [�1]. Since the holonomy map
hol : P (S) ! V (S) is a local homeomorphism, one can take a sequence f(tn; 'n)g
in Q(S) converging to (t; ') and satisfying hol(tn; 'n) = [�n]. Since fC : S ! N

bG is
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Figure 2. The subset f�1t;' (�( bG))=�t in St.
not homotopic to a map into @N

bG, G1 does not represent the fundamental group of

either component of @N
bG and hence 
0(G1) \ �( bG) 6= ; (see also Lemma 4.1(2)).

Therefore, Proposition 3.4 implies that (tn; 'n) are exotic. This completes the proof
of Theorem 1.1.

Step 2. Our aim is to show that the sequence f(tn; 'n)g constructed above is con-

tained in QC. To this end, we examine the shape of f�1t;' (�( bG))=�t � St in the
following lemma (see Figure 2).

Lemma 4.1. (1) G1 is a regular b-group. Moreover, [�1] lies on the boundary of

some vertical Bers slice Bt.

(2) The subset f�1t;' (�( bG))=�t in St consists of two connected components and is

contained in an annulus whose core is homotopic to C.

Proof. During this proof, the reader is adviced to refer Figure 3.
(1) Since G1 is a �nitely generated subgroup of the geometrically �nite Kleinian

group bG with 
( bG) 6= ;, it is also geometrically �nite (see, for example, [23, Theorem
3.11]). Moreover, since G1 has a parabolic element corresponding to C, it is not
a quasi-Fuchsian group. Therefore, to show that G1 is a regular b-group, we only
have to show that 
(G1) has a simply connected invariant component.
Let A be a closed annular neighborhood of C in S. By deforming the wrapping

map fC : S ! N
bG in its homotopy class, we may assume that fC maps S � A onto

(S � C) � f0g and that fC(intA) � intN
bG. We take a lift efC : eS ! H3 [ 
( bG) of

fC satisfying efC � g = �1(g) � efC for all g 2 �1(S);

where �1(S) is regarded as the covering transformation group of the universal cov-

ering map p : eS ! S. Since the map fC is �1-injective, we may assume that the

map efC is an embedding, and hence the image efC(eS) of eS is simply connected.

Fix a component eA0 of eA = p�1(A). Let g0 2 �1(S) be a generator for the

stabilizer of eA0 in �1(S). Let h0; �0i be a rank two parabolic subgroup of bG which

is conjugate to h; �i in bG and satisfying �1(g0) = 0. Since h0i stabilizes efC( eA0),
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R

eC1
eC3

eC2

         

Figure 3. �( bG) and 
0(G1) (the shaded part).

each of two components eC1; eC2 of efC(@ eA0) forms a simple closed curve together with

the common �xed point of h0; �0i. Note that eC1 and eC2 projects onto C � S�f0g �

@N
bG via the covering map 
( bG)! @N

bG. Since fC(A) wraps once around a tubular

neighborhood of C � f1=2g in N
bG, we may assume that

eC2 = �0 eC1 holds. Let R be

the crescent-like domain in bC lying between eC1 and eC2, and let D be the domain

which is cut out of H3 by efC( eA0) and is facing R. Note that R\ efC(eS� eA) = ; and
that D is precisely invariant under the subgroup h0i of G1, that is, (0)l(D) = D

for any l 2 Z and D \ g(D) = ; for any g 2 G1 � h0i. Therefore, efC is homotopic

to an embedding F : eS ! bC satisfying

F � g = �1(g) � F for all g 2 �1(S);

and the homotopy is constant on eS � eA. Since G1 acts on F (eS) properly discon-

tinuously, there is a component � of 
(G1) containing F (eS). One can easily see

that � coincides with F (eS) because F : eS ! bC descends to an homeomorphism

S ! F (eS)=G1 � �=G1. Since F (eS) is simply connected, G1 is a regular b-group

with F (eS) = 
0(G1).
A result of Abiko� [1] implies that any representation whose image is a regular b-

group lies on the boundary of some (vertical or horizontal) Bers slice. Since F : eS !bC descends to an orientation preserving homeomorphism S ! 
0(G1)=G1 � NG1
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which induces the representation [�1], one can see that [�1] lies on the boundary
of a vertical Bers slice Bt for some t 2 T (S).

(2) We �rst remark that the limit set �( bG) is connected since each component of


( bG) is simply connected, the latter can be seen from the fact that each component
of @NG is incompressible in N

bG.

From the above argument, we have F ( eA) = Sg2G1=h0i
g(R). Since


0(G1)�
[

g2G1=h0i

g(R) = F (eS)� F ( eA) � 
( bG);
we have


0(G1) \ �( bG) =
0@ [
g2G1=h0i

g(R)

1A \ �( bG) = [
g2G1=h0i

g(R \ �( bG)):
Therefore, we concentrate our attention to R \ �( bG). Let G0 be a subgroup of bG
representing the fundamental group of S � f0g � @N

bG. By conjugating G0 in bG, if
necessary, we may assume that eC1 � 
0(G0) and that eC2 � 
0(�0G0�0�1). Note that

0(G

0)\
0(�
0G0�0�1) = ;, since �0 =2 G0. One can easily see that there exists a unique

lift eC3 of C � S �f1g � @N
bG contained in R and terminating in the common �xed

point of h 0; �0i at both ends. The curve eC3 divides R into two crescent-like domains

R1 and R2. Since eC1; eC2 and eC3 are contained in distinct components of 
( bG),
Rj \�( bG) 6= ; for j = 1; 2. Moreover, since �( bG) is connected, Rj \�( bG), j = 1; 2,

is also connected. Therefore, the subset F�1(�( bG))=�1(S) in S consists of two
connected components and is contained in the annulus A whose core is homotopic

to C. Since F : eS ! bC can be regarded as the developing map of the projective
structure on S corresponding to (t; ') 2 P (S), we obtain the assertion.

Step 3. Let f�ng be the sequence of MLZ(S) satisfying (tn; 'n) 2 Q�n.

Lemma 4.2. �n 2 fkC : k 2 Ng � MLZ(S) for large enough n.

Proof. For simplicity, we denote f�1t;' (�( bG))=�t by b� and !�1n (f�1tn;'n(�(Gn))=�tn)
by �n. Take an open annulus A in St hwose core is homotopic to C and which

containing b�. Then K = St � A is a compact set. Now suppose that there exists a
subsequence fnjg such that �nj 62 fkC : k 2 Ng. Then, from the characterization
of �nj in Lemma 2.4, one can easily see that �nj \ K 6= ; for all j. Since K
is compact, any sequence fznj 2 �nj \ Kg has an accumulation point z1 2 K.

But the Hausdor� convergence �n ! b� (Lemma 3.3) implies that z1 2 b�, which
contradicts to b� \K = ;.

Step 4. For an annulus A with a conformal structure, the modulus m(A) of A is
de�ned bym(A) = (2�)�1 log c when A is conformally equivalent to a round annulus
fz 2 C : 1 < jzj < cg. We will make use of the monotonicity of moduli; if an annulus
A contains disjoint essential annuli A1 and A2, then m(A1) +m(A2) � m(A) (see
[20, Lemma 6.3]).
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Lemma 4.3. There exists a positive constant m0 > 0, independent of n, satis-

fying the following: Any curve on Stn joining any two connected components of

f�1tn;'n(�(Gn))=�tn traverses some annulus whose core is homotopic to C and whose

modulus is larger than m0.

Proof. Fix a positive integer k 2 N. We consider a sequence f(sn;  n)g = f	kC([�n])g
in QkC, where

	kC = (holjQkC)
�1 : QF (S)! QkC :

We will show that there exists a positive constant m0, independent of k and n,
satisfying the following: Any curve in Ssn joining any two connected components of
f�1sn; n(�(Gn))=�sn traverses some annulus whose core is homotopic to C and whose
modulus is larger than m0. Once it has shown, since (tn; 'n) = 	knC([�n]) for
�n = knC, we obtain the assertion in Lemma 4.3.
The proof depends on the particular form of [�n] = qf(�nu; � 2nv). For sim-

plicity, we assume that [�0] = qf(u; v) is a Fuchsian representation. (The follow-
ing argument, with a slight modi�cation, works out without this assumption.)
Let (p; �) denote the projective structure in Q0 such that [�p;�] = [�0]. Then
(s0;  0) = GrkC(p; �). To obtain (s0;  0) from (p; �), we perform the same con-
struction as described in 2.4. We use the same notation and normalization as in 2.4;
for example, G0 = �p;�(�1(S)) is a Fuchsian group acting onH, g 2 G0 is a generator
of cyclic subgroup which stabilizes B�, etc. In addition, we prepare some notations;
let B�

� = fz 2 H� : 3�=2 � � < arg z < 3�=2 + �g be the complex conjugation of

B�, put bB� = B� [B
�
� and set bD� =

S
h2G0=hgi

h( bB�).

Recall that f�1s0; 0(�(G0))=�s0 � Ss0 consists of 2k simple closed curves each of

which is homotopic to C. Moreover, observe that f�1s0; 0(
bD�)=�s0 contains 2k + 1

annular domains A1; : : : A2k+1 each of whose core is homotopic to C. There exists
exactly one connected component of f�1s0; 0(�(G))=�s0 lying between Aj and Aj+1

for every j 2 f1; : : : ; 2kg. Therefore, any curve on Ss0 joining any two components
of f�1s0; 0

(�(G0))=�s0 traverses some Aj. Note that the developing map fs0; 0 induce

a natural conformal isomorphism �j : Aj ! B
(�)
� =hgi for all j, where B(�)

� is B� or
B�
�.

One can take an element �n 2 Belt(G0)1 with supp(�n) � bD�=2 such that the

quasi-conformal map w�n : bC ! bC induces the quasi-conformal deformation [�n] =
qf(�nu; � 2nv) of [�0] = qf(u; v). (See [33] for an explicit description of �n.) This
element �n 2 Belt(G0)1 also induces the quasi-conformal deformation (sn;  n) of
(s0;  0), as described in 2.5. Recall that the quasi-conformal map w�̂njHs0 : Hs0 !
Hsn with the Beltrami coe�cient �̂n = f�s0; 0(�n) descends to a quasi-conformal map
g�̂n : Ss0 ! Ssn.

The two components of ��1j ((B(�)
� � B

(�)
�=2)=hgi) � Aj are denoted by A0

j and

A00
j , each of which is essential sub-annulus in Aj. An easy calculation reveals that

m(A0j) = m(A00
j ) = �=2l for all j, where l is the exponent of g, that is, g(z) = elz.

Since g�̂n is conformal on A0
j [ A

00
j , combining with the monotonicity of moduli, we
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have

m(g�̂n(Aj)) � m(g�̂n(A
0
j)) +m(g�̂n(A

00
j ))

= m(A0j) +m(A00j )

= �=l:

Put m0 = �=l. Then any curve on Ssn = g�̂n(Ss0) joining any two connected
components of f�1sn; n

(�(Gn))=�sn = g�̂n(f
�1
s0; 0

(�(G0))=�s0) traverses some g�̂n(Aj)
whose core is homotopic to C and whose modulus is larger than m0. We have
completed the proof of Lemma 4.3.

Step 5. The following lemma implies that the hyperbolic distance between two
boundary components of an annulus in a Riemann surface can be estimated below
by using the modulus of the annulus. The essencial tool in this proof is Gr�otzsch's
module theorem (see [20]). For t 2 T (S), we denote the hyperbolic distance of
z1; z2 2 St by dt(z1; z2) and the hyperbolic length of the closed geodesic representing
C 2 S by lt(C).

Lemma 4.4. Let t 2 T (S) and C 2 S. Let A � St be an annular domain such

that @A consists of two simple closed curves C1; C2 each of which is homotopic to

C. Then there is a positive constant I = I(lt(C);m(A)) > 0 which depends only on

lt(C) and m(A) such that

dt(C1; C2) > I(lt(C);m(A));

where dt(C1; C2) = inffdt(z1; z2) : zj 2 Cj(j = 1; 2)g.

Proof. Let H = fz 2 C : Imz > 0g denote the upper half plane. Take a holo-
morphic covering map p1 : H ! St so that the imaginary axis iR+ projects onto
a simple closed curve homotopic to C. Let eA denote the connected component of

p1
�1(A) which connect 0 and 1. Then eA is stabilized by a cyclic group hgi which

is generated by g(z) = z exp(lt(C)). Since m(H=hgi) = �=lt(C), there is a holo-
morphic covering map p2 : H ! R = fw 2 C : 1 < jwj < exp(2�2=lt(C))g whose
covering transformation group is hgi. Let �R(w)jdwj denote the complete hyperbolic
metric on R, and dR(�; �) the distance with respect to �R(w)jdwj. Note that A is

conformally equivalent to A0 = p2( eA) and that dt(C1; C2) = dR(C
0
1; C

0
2), where C

0
1

and C 0
2 are components of @A

0. One can easily see that there is a positive constant
I1 = I1(lt(C)) which depends only on lt(C) such that �R(w)jdwj > I1(lt(C))jdwj.
Therefore we obtain

dR(C
0
1; C

0
2) > I1(lt(C))de(C

0
1; C

0
2);(4.1)

where de(�; �) is the distance with respect to the Euclidean metric jdwj.
We can assume that C 0

1 (resp. C
0
2) is the inner (resp. outer) component of @A

0.
Take w1 2 C 0

1 and w2 2 C 0
2 satisfying de(w1; w2) = de(C

0
1; C

0
2). Let D � C be

a connected component of C � C0
2 which contains 0. Take a Riemann mapping

h : � ! D such that h(0) = 0 and h�1(w1) = r > 0. Now, Koebe's one-quarter
theorem and Koebe's distorsion theorem (see, for example, [28, p.9]) implies that
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there is a positive constant I2 = I2(1� r) such that

de(C
0
1; C

0
2) > I2(1� r):(4.2)

Let �(r) denote the modulus of the domain fz 2 C : jzj < 1; z 62 [0; r]g for
0 < r < 1. Then Gr�otzsch's module theorem asserts that m(A) � �(r) for any
annular domain A � � = fz 2 C : jzj < 1g which separates 0 and r from @� (see
[20, Chapter II] for more informations). Since h�1(A0) separates 0 and r from @�,
Gr�otzsch's theorem implies that m(A0) � �(r). Since � is a monotone decreasing
function, there is a positive constant I3 = I3(m(A0)) such that

1� r > I3(m(A0)):(4.3)

From the inequalities (4.1)-(4.3), we obtain

dR(C
0
1; C

0
2) > I1(lt(C))I2(I3(m(A0)):

Since dR(C 0
1; C

0
2) = dt(C1; C2) and m(A0) = m(A), we obtain the assertion.

Using Lemma 4.4, we can �nally prove the next lemma, and can complete the
proof of Theorem A for the special case.

Lemma 4.5. (tn; 'n) 2 QC for large enough n.

Proof. Since maximal dilatations of quasi-conformal maps !n : St ! Stn tend to 1,
there exists a positive constant m1 > 0 such that moduli of !n�1 � g�̂n(Aj) exseed
m1 for su�ciently large n. Since any curve in St joining any two components of
�n = !n

�1(f�1tn;'n(�(Gn))=�tn) traverses some !n
�1 � g�̂n(Aj), Lemma 4.4 implies

that there exists a positive constant L > 0 such that the hyperbolic distance of any
two components of �n is bounded below by L for su�ciently large n. Then, from
Lemma 3.3 and Lemma 4.1(2), one can easily see that �n consists of two connected
components each of which is homotopic to C. Therefore, from Lemma 2.4, we obtain
the assertion.

4.2. Proof for general case. Take an arbitrary element � =
Pl

j=1 njCj 2 MLZ(S)

and let bG be a geometrically �nite Kleinian group whose Kleinian manifold N
bG is

homeomorphic to S � [0; 1] � [lj=1Cj � f1=2g. Let f� : S ! N
bG be an immersion

such that S minus every annular neighborhoods of Cj is mapped into S � f0g by
inclusion and the image of each annular neighborhood of Cj is wrapping nj times
around Cj � f1=2g. This immersion is called the wrapping map associated to �.
Now we perform simultaneous (n; 1) Dehn �lling on all the cusps to obtain a

sequence of quasi-Fuchsian representations f�n : bG ! Gng as before. Moreover,
we obtain a sequence f�n = �n � (f�)�g of representations converging algebraically
to �1 = (f�)�, and the corresponding sequence f(tn; 'n)g of projective structures
converging to (t; ') 2 @Q0. Then we can show, in the same manner in the proof

of Lemma 4.1, that the subset f�1t;' (�( bG))=�t in St consists of disjoint unions of 2nj
connected components contained in annuli whose core are homotopic to Cj for all
j. Again, we can show that (tn; 'n) 2 Q� for large enough n. Finally, we have
completed the proof of Theorem A.
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4.3. A remark. Although it is di�cult to understand exactly the shape of the
closed set Q0 \Q�, one can see that it is not a compact subset of P (S).

Proposition 4.6. For any � 2MLZ(S), Q0 \Q� is not compact in P (S).

Proof. We proof this, again, for the case that � = C 2 S. Let bG be the same as in
the proof of Theorem A for special case. Let A be an annular domain in a component
S � f1g of conformal boundary @N

bG, whose core is homotopic to C. Observe that
A can be conformally embedded in St, where t 2 T (S) is the underlying complex
structure of the limit point (t; ') 2 @Q0 constructed in the proof of Theorem A.
If we deform the conformal structure on S � f1g so that m(A) ! 1, then the
hyperbolic length of C on S � f1g tends to 0. Then t diverges in T (S), and hence
(t; ') 2 @Q0 diverges in P (S).

5. The proofs of Theorems B and C

For C1; C2 2 S, the geometric intersection number i(C1; C2) is the minimum
number of points in which the representations of C1 and C2 must intersects. This
can be naturally extended toMLZ(S). The main aim of this section is to prove the
next theorem.

Theorem B. For any �nite set f�ig
m
i=1 � MLZ(S) satisfying i(�j; �k) = 0 for all

j; k 2 f1; : : : ; mg, we have Q0 \Q�1 \ � � � \ Q�m 6= ;.

To prove this theorem, we �rst prepair the following Lemma 5.1, which provides
us a method to construct some sequences of representations with the same algebraic
limit but with mutually distinct geometric limits.
For a Kleinian group G, let MG = H3=G denote the interior of the Kleinian

manifold NG = (H3 [ 
(G))=G.

Take an element � =
Pl

j=1 njCj 2 MLZ(S) and an ordered set of positive integers
k = fk1; : : : ; klg. For this pair (�;k), we de�ne a new element �=k of MLZ(S) by

�=k =
lX

j=1

[nj=kj]Cj;

where [nj=kj] is the largest integer which does not exceed nj=kj.

Lemma 5.1. Let � =
Pl

j=1 njCj be an element ofMLZ(S), and let bG be a geomet-

rically �nite Kleinian group such that N
bG is homeomorphic to S� [0; 1]�

Sl
j=1 Cj �

f1=2g. Then, for any ordered set of positive integers k = fk1; : : : ; klg, there exists

a geometrically �nite Kleinian group bG0 such that

� N
bG0 is also homeomorphic to S � [0; 1]�

Sl
j=1 Cj � f1=2g, and

� the wrapping map f� : S !M
bG associated to � and the wrapping map f�0 : S !

M
bG0 associated to �0 = �=k induce the same representation up to conjugation

in PSL2(C), that is, [(f�)�] = [(f�0)�].

Proof. Take an element �� =
Pl

j=1mjCj 2 MLZ(S) satisfying mj = nj � [nj=kj]kj
for all j. Note that 0 � mj < kj hold for all j. We consider the wrapping map
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f�� : S !M
bG and denote (f��)�(�1(S)) by G. Recall that G is a regular b-group, and

that MG is homeomorphic to the interior of S � [0; 1]. Via the canonical projection

p1 : MG ! M
bG, the map f�� is lifted to an embedding ef�� : S ! MG which is a

homotopy equivalence.
We now choose a basis hj; �ji � bG for the fundamental group of each rank two

cusp inM
bG corresponding to Cj�f1=2g as before, but with an additional assumption

that j is contained in G. We take a subgroup

bG0 = hG; �k11 ; : : : ; �
kl
l i

of bG. Since mj < kj hold for all j, one can take Jordan domains fDj;D
0
jg
l
j=1 in


(G) such that

� both Dj and D0
j are stabilized by hji,

� �j
kj maps @Dj onto @D

0
j and the interior of Dj onto the exterior of D

0
j, and

� fDj; D
0
jg
l
j=1 are projected onto 2l disjoint cusp neighborhoods in @NG via the

covering map 
(G)! @NG.

Now one can apply the Klein-Maskit combination theorem II [22, Theorem E.5 (xi)]

inductively to show that N
bG0 is homeomorphic to S � [0; 1] �

Sl
j=1Cj � f1=2g.

Moreover, note that the canonical projection p2 : MG ! M
bG0 maps the end of MG

corresponding to S � f0g homeomorphically onto the end of M
bG0 corresponding to

S � f0g. Therefore p2 � ef�� is homotopic to the inclusion map f0 : S ! M
bG0 onto

S � f1=4g.
We now consider the canonical projection p3 : M bG0 ! M

bG. Note that p3 � f0 is
homotopic to f��. Observe that the restriction of p3 on the tubular neighborhood
of Cj � f1=2g in M

bG0 is a kj-fold covering map onto the tubular neighborhood
of Cj � f1=2g in M

bG. We now perform a surgery to obtain the wrapping map
f�0 : S ! M

bG0 from f0 : S ! M
bG0 as before. Then p3 � f�0 is homotopic to the

wrapping map f� : S ! M
bG associated to �. Therefore [(p3 � f�0)�] = [(f�)�], and

since (p3)� : bG0 ! bG is the inclusion map, we have [(f�0)�] = [(f�)�].

Now Theorem B follows immediately from Lemma 5.1.

Proof of Theorem B. For any �nite set f�igmi=1 � MLZ(S) satisfying i(�j ; �k) = 0

for all j; k 2 f1; : : : ;mg, one can easily �nd an element � =
Pl

j=1 njCj 2 MLZ(S)

and ordered sets of positive integers ki = fk
(i)
1 ; : : : ; k

(i)
l g satisfying �i = �=ki for all

i. By Lemma 5.1, there exist Kleinian groups bG and bGi(i = 1; : : : ;m) such that the
wrapping maps f� : S ! M

bG and f�i : S ! M
bGi
induce the same representations

[(f�)�] = [(f�i)�] for all i. Take the element (t; ') 2 @Q0 such that hol(t; ') = [(f�)�].
By performing simultaneous (n; 1) Dehn �lling on all the cusps in M

bGi
, we obtain

a sequence f(t(i)n ; '
(i)
n )g in Q�i converging to (t; '). We have completed the the

proof.

As a consequence of Theorem B, we obtain the following
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Theorem C. For any positive integer n 2 N, there exists a point [�] 2 @QF (S)
such that U \QF (S) consists of more than n components for any su�ciently small

neighborhood U of [�].

Proof. For any positive integer n 2 N, a �nite set fkCgnk=1 in MLZ(S) satis�es
the condition in Theorem B. Since the holonomy map hol : P (S) ! V (S) is local
homeomorphism, we obtain the assertion.
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