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Abstract. We will show that every Kleinian groups on a Bers boundary of the
Teichm�uller space is an algebraic limit of a sequence of Schottky groups. To show
this, we extend the action of the mapping class group on a Bers slice to that on
a class of function groups whose invariant components are covering some �xed
Riemann surface. An important observation is that the orbit of every maximal
cusp is dense in a Bers boundary.

1. Introduction

In this paper, we extend the action of the mapping class group on a Bers slice
to that on a wider class (which will be called an extended Bers slice) of Kleinian
groups. Here, we explain the fundamental idea how to extend the action of the
mapping class group.
Let S be an oriented compact surface possibly with boundary @S, and let T (S)

be the Teichm�uller space of comprete hyperbolic structures on the interior of S
with �nite area. Let V (S) be the space of conjugacy classes of representations of
�1(S) into PSL2(C). The subspace QF (S) of V (S) consisting of discrete faithful
representations whose images are quasi-Fuchsian groups is naturally identi�ed with
a product of Teichm�uller spaces T (S) � T (S); that is, there exists a holomorphic
isomorphism

Q : T (S)� T (S)! QF (S):

The mapping class group Mod(S) of S naturally acts on T (S), and hence on the
Bers slice BX = Q(fXg � T (S)) for every X 2 T (S);

Q(X; Y ) 7! Q(X; �Y );

where � 2Mod(S). The representationQ(X; �Y ) has another description as follows;

Q(X; �Y ) = Q(��1X; Y ) � ��
�1;

where �� is the group isomorphism of �1(S) induced by �. The right side of the above
equation suggests us a possibility to de�ne the action of Mod(S) even when Y is
pinched or degenerated. In this view point, Bers [3] extended the action of Mod(S)
to that on the closure of BX and, in this paper, we extend the action to that on the
subset CX of V (S) consisting of representations whose images are function groups
with invariant components covering X 2 T (S). The set CX is called an extended
Bers slice for X.
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Our main theorem is the following (see Lemma 6.1 and Theorem 6.4):

Main Theorem . The subset SX of CX of Schottky groups consists of exactly one
orbit under the action ofMod(S) and the set of accumulation points of SX contains
the Bers boundary @BX .

We remark that, in the case of genus 2, it was shown by Gallo [8] that the set
of accumulation points of SX contains the Bers boundary @BX . But our method is
di�erent from that of Gallo.
This paper is organized as follows: In section 2, we give a de�nition of an extended

Bers slice CX on which we de�ne the action of the mapping class group. In section
3, we obtain a su�cient condition so that the action of Mod(S) is continuous at
an element of CX (Corollary 3.2). In section 5, we show that the orbit of every
maximal cusp is dense in the Bers boundary @BX (Theorem 5.6). In section 6, we
prove our main theorem as a corollary of preceding sections. In section 5 and 6, one
of the crucial tool is Thurston's compactness theorem [23], which will be introduced
in section 4.

Acknowledgements . The author would like to express his gratitude to Hiroshige
Shiga for his encouragement and useful suggestions.

2. Preliminaries

Let S be a compact oriented surface of negative Euler characteristic possibly with
boundary @S. The Teichm�uller space T (S) is the set of equivalence classes of pairs
(f;X); where X is a hyperbolic Riemann surface of �nite area and f : int(S)! X is
a homeomorphism from the interior of S. Two pairs (f;X) and (g; Y ) are equivalent
if there is a conformal map  : X ! Y such that  �f is isotopic to g. The mapping
class groupMod(S) is the group consisting of isotopy classes of orientation preserving
homeomorphisms of S. There is a natural action of � 2Mod(S) on T (S) by

�(f;X) = (f � ��1; X):

A Kleinian group G is a discrete subgroup of PSL2(C), which acts on the hyper-

bolic space H3 as isometries, and on the sphere at in�nity S2
1

= Ĉ by conformal

automorphisms. The limit set of G in Ĉ is denoted by �(G) and its compliment

Ĉ � �(G), which is called the region of discontinuity of G, is denoted by 
(G).
A Kleinian group G is called a function group if its region of discontinuity 
(G)
has an invariant component 
0(G). If a function group has exactly two invariant
components, it is called a quasi-Fuchsian group; otherwise, it has a unique invariant
component.
For a given X 2 T (S), let � be a Fuchsian group acting on the unit disc � =

fz 2 Ĉ : jzj < 1g such that X = �=�. We de�ne the space of bounded holomorphic
quadratic di�erentials on � for � by

B2(�) = f'j' is holomorphic on �; ' � (0)2 = ' for 8 2 � and jj'jj1 <1g;

where jj'jj1 is the hyperbolic sup-norm of ' de�ned by supz2�(1 � jzj2)2j'(z)j.
With this norm jj'jj1, B2(�) is a �nite dimensional complex Banach space.
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For ' 2 B2(�), we associate a pair (f'; �'), called a normalized projective structure
on X; where,

f' : �! Ĉ

is a meromorphic local homeomorphism whose Schwarzian derivative S(f') is equal
to ', and

�' : �! PSL2(C)

is a group homomorphism satisfying f' �  = �'() � f' for all  2 �. Moreover, f'
is normalized by the conditions f'(0) = 0; f 0'(0) = 1 and f 00'(0) = 0. Then there is
a bijective correspondence between normalized projective structures and B2(�).
We denote by C(�) the set of ' 2 B2(�) such that the map f' is a covering map.

For ' 2 C(�), G = �'(�) is a function group (possibly with torsion) and f'(�) is an
invariant component of G (see [12] for more information). Furthermore, we denote

C0(�) by the set of ' 2 C(�) such that the map f' : � ! f'(�) � Ĉ induces a
conformal isomorphism X = �=�! f'(�)=�'(�);

C0(�) = f' 2 C(�)jX = �=� �= f'(�)=�'(�)g:

For ' 2 C0(�), G = �'(�) may have an elliptic element whose �xed points are not
contained in the invariant component 
0(G) = f'(�). In [14], one can �nd examples
of elements of C(�) but not of C0(�).
Let V (S) denote the space of conjugacy classes [�] of irreducible representations

� : �1(S)! PSL2(C) such that �(g) is parabolic for every g 2 �1(@S). We also use
the notation (�;G) to represent an element [�] 2 V (S) whose image is G = �(�1(S)).
The space V (S) is a manifold endowed with the algebraic topology; a sequence of
representations �n : �1(S) ! PSL2(C) converges algebraically to a representation
� : �1(S)! PSL2(C) if �n(g)! �(g) in PSL2(C) for all g 2 �1(S).
It is known by Kra [11] that the map

hol : B2(�)! V (S)

assigning the conjugacy class [�'] of the representation �' : �1(S) �= � ! PSL2(C)
to ' 2 B2(�) is a holomorphic embedding. (Here and hereafter, we frequently
identify a representation of �1(S) with a representation of �.) For any X 2 T (S),

we de�ne subsets ĈX and CX of V (S) by

ĈX = hol(C(�)); and CX = hol(C0(�)):

We call CX an extended Bers slice, on which we will de�ne an action of the mapping
class group. We can de�ne CX directly as a subset of V (S) consisting of function
groups whose invariant components are covering X 2 T (S); more precisely, a rep-
resentation (�;G) 2 V (S) is an element of CX if G is a function group with an
invariant component 
0(G) and � is induced by the composition of the inclusion
map � : 
0(G)=G ,! NG into the Kleinian manifold NG = H3 [ 
(G)=G with a
conformal isomorphism g : X ! 
0(G)=G.
A Bers slice BX is the subset of CX consisting of faithful representations whose

images are quasi-Fuchsian groups. It is known by Bers [2] that a Bers slice BX

is (anti-holomorphically) isomorphic to the Teichm�uller space T (S), and that it is
relatively compact in V (S). A set @BX = �BX�BX is called a Bers boundary, where
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�BX is the closure of BX in V (S). Moreover, we denote by B̂X the subset of CX

consisting of faithful representations. It is conjectured that �BX = B̂X in Bers [2].
The followings are the sets which we want to consider in this paper.

BX � �BX � B̂X � CX � ĈX :

Example . In the case that S is a closed surface, a typical example of an element
of CX � B̂X is a Schottky group. A Kleinian group G is a Schottky group if its
Kleinian manifold NG = H3 [ 
(G)=G is homeomorphic to a handle body Hg. Let
G be a Schottky group which uniformizes X, that is X = 
(G)=G = @NG, then a
representation � : �1(S) �= �1(@NG) ! G �= �1(NG) induced by the inclusion map

@NG ,! NG is an element of CX but not of B̂X .

Lemma 2.1. For any X 2 T (S), CX is a compact subset of V (S).

Proof. To show that CX = hol(C0(�)) is compact, we will show that C0(�) is closed
and bounded subset of B2(�). Since it is known by Kra and Maskit [14] that C(�)

is a closed and bounded subset of B2(�) (i.e. ĈX is compact), we only have to show
that C0(�) is closed. Let 'n 2 C0(�) be a sequence converging to ' 2 C(�). Let
(fn; �n) and (f; �) be normalized projective structures corresponding to 'n and ',
respectivery. Then fn converges to f locally uniformly on �. Suppose that the map
g : X ! f(�)=�(�) induced from f : �! f(�) is not injective. Then there are two
points x; y 2 X(x 6= y) such that g(x) = g(y), and hence there are lifts ~x; ~y 2 � of x
and y such that f(~x) = f(~y). Since fn(~x)! f(~x) and fn(~y)! f(~y), the hyperbolic
distances dn between fn(~x) and fn(~y) on fn(�) tend to 0 as n!1. On the other
hand, since 'n 2 C0(�), fn(�)=�n(�) are conformally equivalent to X. It implies
that dn is equal to the hyperbolic distance between x and y on X for all large n.
This is a contradiction.

For a given Kleinian group G with 
(G) 6= ;, we denote by B(U;G)1 the space
of measurable Beltrami di�erentials � for G satisfying jj�jj1 = ess.supj�j < 1 with

support in an open set U � Ĉ. For � 2 B(U;G)1, there is a unique quasiconformal
homeomorphism

w� : Ĉ! Ĉ

satisfying (w�)�z = � � (w�)z (a.e.) and �xing 0; 1 and 1. Two elements �; � 2
B(U;G)1 are equivalent (denoted by � � �) if w� and w� induce the same group
isomorphism; that is, w� � g � (w�)

�1 = w� � g � (w�)
�1 for all g 2 G.

Let � be a Fuchsian group acting on the unit disc � such that X = �=�. Let
(�;G) 2 CX and let (f : �! 
0(G); � : �1(S)! G) be the corresponding projective
structure. For � 2 B(�;�)1, the push-forward f�� is an element of B(
0(G); G)1
which is de�ned locally by the pull-back

(f�1)�� = � � f�1 � (f�1)0=(f�1)0

of � via some branch of f�1. Then, the map

f� : B(�;�)1 ! B(
0(G); G)1;
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assigning f�� to � is an isomorphism. The quotient space B(�;�)1= � is naturally
identi�ed with the Teichm�uller space T (S). We de�ne a subspace QC0(�) of V (S)
by

QC0(�) = f[�0] 2 V (S)j�0() = w� � �() � (w�)
�1;  2 �1(S); � 2 B(
0(G); G)1g:

This space QC0(�) is also identi�ed with the quotient space B(
0(G); G)1= �. Then,
it was shown by Maskit [17] (see also Kra [13]) that the map f� : B(�;�)1 !
B(
0(G); G)1 descends to an unbranched covering map

	� : T (S)! QC0(�)

with 	�(X) = [�]. One can easily see that 	�(Y ) 2 CY for all Y 2 T (S) and that if
[�] 2 CX then [�]���1

�
2 C�X for all � 2Mod(S), here �� is the group isomorphism

of �1(S) induced by �. Now we de�ne the action of � 2Mod(S) on CX by

[�] 7! [�]� = 	�(�
�1X) � ��1

�
:

One can easily check that [�]�1��2 = ([�]�2)�1 holds for any �1; �2 2 Mod(S). This
action of Mod(S) coincides with the natural action on BX

�= T (S) described in

Introduction. We also remark that the action restricted to B̂X is the same with that
de�ned by Bers in [3].

3. Continuity of the action of the mapping class group

In this section, we obtain a su�cient condition for [�] 2 CX so that the action of
Mod(S) at [�] is continuous. The same result, for the case that CX is replaced by

B̂X , was obtained by Bers [3].
We �rst show the continuity under base change.

Proposition 3.1. Let [�] = (�;G) be an element of CX such that all components
of 
(G)=G except for X = 
0(G)=G have (if there exist) no moduli of deformation.
Then the following holds:
If [�n]! [�] in CX then 	�n(Y )! 	�(Y ) in CY for all Y 2 T (S).

Proof. Let 'n and ' be elements in C0(�) such that hol('n) = [�n] and hol(') = [�],
respectively. Since C0(�) is compact and the map hol : B2(�) ! V (S) is injec-
tive, 'n ! ' in C0(�). Let (fn; �n) and (f; �) be normarized projective structures
for 'n and ', respectively. Then fn converges to f locally uniformly on �. Let
� 2 B(�;�)1 be a representative of Y 2 T (S). We may assume that � is con-
tinuous. Put �̂n = (fn)�� 2 B(
0(Gn); Gn)1 and �̂ = f�� 2 B(
0(G); G)1, where
Gn = �n(�1(S)) and G = �(�1(S)). Since fw�̂ng �x 0; 1 and1 and their dilatations
are uniformly bounded, it has a subsequence (which we denote by the same sym-

bol) fw�̂ng converging uniformly to some quasiconformal homeomorphism w1 of Ĉ.
Since the representatives of 	�n(Y ) are induced by w�̂n �fn, f	�n(Y )g converges al-
gebraically to the conjugacy class of a representation induced by w1 � f . Therefore,
we only have to show that w1 and w�̂ induce the same group isomorphism from G
into PSL2(C).
Since injectivity radii (with respect to the Poincar�e metric on �) of fn are uni-

formly bounded below (see [14], Lemma 5.1), for any z 2 
0(G), there is an open
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neighborhood U of z and suitable branches of inverse maps fn
�1 and f�1 on U such

that fn
�1 converges to f�1 uniformly on U . Hence one can see that �̂n converges to

�̂ locally uniformly on 
0(G). Therefore, w�̂n �(w�̂)
�1 converges to a conformal map

w1 � (w�̂)
�1 locally uniformly on w�̂(
0(G)), and hence, the Beltrami coe�cient of

w1 is equal to �̂ almost everywhere on 
0(G). Since there is no essential deforma-
tion on 
(G) � 
0(G) by assumption and on �(G) by Sullivan's rigidity theorem
[22], w1 and w�̂ induce the same group isomorphism.

Corollary 3.2. Let [�] be an element of CX satisfying the same condition as in
Proposition 3.1. Then the action ofMod(S) is continuous at [�]; that is, if [�n]! [�]
in CX then [�n]

� ! [�]� for all � 2Mod(S).

Proof. By Proposition, 	�n(�
�1X) ! 	�(�

�1X) for all � 2 Mod(S). Therefore,
[�n]

� = 	�n(�
�1X) � ���1 converges algebraically to [�]� = 	�(�

�1X) � ���1.

Remark . In [10], Kerckho� and Thurston showed that there is a Bers slice BX and
a point [�] 2 @BX at which the action of Mod(S) is not continuous.

4. Thurston's compactness theorem

In this section, we introduce Thurston's compactness theorem [23], which will
play an important roll in the following sections.
Let M be a compact 3-manifold with boundary @M . A closed curve  on @M is

said to be compressible if it is null homotopic in M but not in @M ; otherwise it is
incompressible. A proper map f : (A; @A) ! (M; @M) of an annulus A into M is
said to be essential if f� : �1(A) ! �1(M) is an injection and f is not homotopic
(as a map of pairs) to a map into @M .

De�nition 4.1. Let M be a compact 3-manifold with boundary @M . Let � be a
system of non-trivial homotopically distinct simple closed curves on @M . Then a
pair (M;�) is doubly incompressible if

(1) every compressible simple closed curve on @M intersects � at least three times,
(2) there are no essential annuli with boundary in @M � �, and
(3) every maximal abelian subgroup of �1(@M��) is mapped to a maximal abelian

subgroup of �1(M).

Let M be a compact 3-manifold with boundary @M . We denote by AH(M)
the space of conjugacy classes [�] = (�;G) of discrete faithful representations � :
�1(M)! PSL2(C), where G = �(�1(M)). The space AH(M) is equipped with the
algebraic topology. Let  be an incompressible closed curve on @M . For (�;G) 2
AH(M), l�() denotes the length of the geodesic representative of  in the hyperbolic
manifold H3=G, or l�() = 0 if �() is parabolic. We de�ne AH(M;�;K) to be the
set of (�;G) 2 AH(M) such that l�(�) � K, where l�(�) is the total sum of the
lengths of every component of �.

Theorem 4.2 (Thurston [23]). If (M;�) is doubly incompressible, then AH(M;�;K)
is compact for all K.
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A curve system � = f�jgNj=1 on S is called homotopically independent if it has
the following properties: (1) each �j is a simple closed curve on S and for i 6= j,
�i \ �j = ;, (2) each �j is non-trivial and not freely homotopic to a component of
@S, and (3) for i 6= j, �i is not freely homotopic to �j. A homotopically independent
curve system � = f�jg

N
j=1 on S is maximal if it divides S into a union of pairs of

pants. (If S is a surface of type (g; n); that is, S is a closed surface of genus g with
n open disc removed, then N = 3g�3+n.) A pair (�; �0) of maximal curve systems
on S is called binding S if they have no curves in common and if (after suitable
deformation of � and �0 by homotopy) each component of S � (� [ �0) is a simply
connected domain or an annulus containing a component of @S in its boundary.
The following lemma is discussed in more general setting in Ohshika [21].

Lemma 4.3. Let (�0; �00) be a pair of maximal curve systems which binds S. For
this pair, we de�ne a maximal curve system � on @(S � I), where I = [0; 1] is a
closed interval, as

� = (�0 � f0g) [ (�00 � f1g) [ (@S � f1=2g):

Then (S � I; �) is doubly incompressible.

Proof. We only consider the case of @S 6= ;, since the case of @S = ; is easier. If
@S 6= ;, then S � I is homeomorphic to a handle body Hg of some genus g. We
identify S � I and Hg via this homeomorphism. We �rst check the condition (1)
in the De�nition 4.1. Let  be a compressible simple closed curve on @Hg. Since
S �f0g and S � f1g contain no compressible curves,  must intersect a component
of @S�f1=2g. If i(; �) � 2 (here i(�; �) denotes the geometric intersection number),
one can easily see that the only possible case is the following one: there exists a
component � of @S � f1=2g and a component W of @Hg � ((�0� f0g)[ (�00 �f1g))
homeomorphic to a four-time-punctured sphere such that [� � W and i(; �) = 2.
Let � and � be components of @W such that �; � and  bound a pair of pants T .
Take a base point x in T . By abuse of notation, �; � and  also denote the elements
of �1(@Hg; x) contained in T . Since (�0; �00) is binding, the curves � and � form a
rank 2 free subgroup h�; �i of �1(@Hg; x) which is mapped into �1(Hg; x) injectively.
Hence  = � � � 2 �1(@Hg; x) is incompressible, which is a contradiction.
Now we check the condition (2). Suppose that there exists an essential annulus

f : (A; @A) ! (Hg; @Hg) with boundary in @Hg � �. let  and 0 be images of @A
on @Hg. Then, since i( [ 0; @S � f1=2g) = 0,  and 0 may be assumed to be
contained in S � f0; 1g. Let p : S � I ! S be the canonical retraction. Then, p()
is homotopic to p(0) in S. Since (�0; �00) is binding S,  and 0 must be contained
in the same component of S � f0; 1g. Now the retraction above gives a homotopy
between f and a map into @Hg. This is a contradiction.
Finally, we check the condition (3). Since all abelian subgroups of �1(@Hg � �)

or �1(Hg) are isomorphic to Z, we only have to show that all primitive element of
�1(@Hg � �) is also primitive in �1(Hg). But this is trivial since Hg is homotopic to
S.
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5. Orbit density for maximal cusps

Let [�] 2 B̂X . The accidental parabolic locus of [�] is a homotopically independent
curve system � = f�jg on S such that �(�j) is (a conjugacy class of) a parabolic
element of G = �(�1(S)) for every j, and no simple closed curve which is not

homotopic to a component of � have this property. For [�] 2 B̂X , its accidental

parabolic locus is uniquely determined up to homotopy. An element [�] 2 B̂X is
called maximal cusp if its accidental parabolic locus is maximal. It is a well known
facts that every maximal cusp is contained in @BX and that, for any maximal curve
system � on S, there exists a unique maximal cusp whose accidental parabolic locus
is � (see Abiko� [1] and Maskit [16]).

Lemma 5.1. Let [�] 2 CX and let � = f�jg be a maximal curve system on S.
If �(�j) are parabolic for all j, [�] is the maximal cusp in @BX whose accidental
parabolic locus is �.

Proof. We only have to show that [�] is a faithful representation. Suppose that
� : �1(S) ! G is not faithful. Then the covering map p : 
0(G) ! X = 
0(G)=G
is not universal, where 
0(G) is a unique invariant component of G. Then, by the
planarity theorem (see [18], X.A.4), there exists a non-trivial simple closed curve �

on X and ~� on 
0(G) such that pj~� : ~� ! � is a �nite-sheeted covering map; say k-
sheeted. Let g 2 G be a generator of the subgroup of G stabilizing ~�. Since � � X is
maximal and � is not parallel to a component of �, � must intersect some component
of �, say �1. We may assume that the number of intersection of � and �1 is equal
to i(�; �1). Let ~�1 be a lift of �1 on 
0(G) which intersects ~�. Let h be a parabolic
element which conjugates to �(�1) in G and stabilizing ~�1. By adjoining the �xed

point of h to ~�1, we obtain a simple closed curve, which divides Ĉ into two domains;
let D be one of the two domains. If k > 1, we require that D satis�es D\g(D) = ;.
Let �1 be a component of D \ ~� and � be an arc in ~�1 which connects end points
of �1. Let ~�1 = �1 [ � and let ~�2 be the closed curve ~� with �1; g(�1); : : : ; g

k�1(�1)
replaced by �; g(�); : : : ; gk�1(�). Then, for j = 1; 2, ~�j projects to a simple closed

curve �j on X such that pj~�j : ~�j ! �j is a �nite-sheeted covering map. Moreover,
note that i(�j; �) is strictly less than i(�; �) for j = 1; 2. Since � is non-trivial and
� = �1 � �2, either �1 or �2 are non-trivial. After a �nite number of steps as above, we
obtain a non-trivial simple closed curve �0 such that i(�0; �) = 0 and that, for a lift
~�0 of �0, pj~�0 : ~�0 ! �0 is a �nite-sheeted covering map. This is a contradiction.

For a simple closed curve � on S, let D� 2Mod(S) denote the Dehn twist (once)
around �.

Proposition 5.2. Let (�0; �00) be a binding pair of maximal curve systems on S.
Let [�] 2 @BX be a maximal cusp whose accidental parabolic locus is �00. Put � =
D�1 � � � � � D�N 2 Mod(S), where �0 = f�jg

N
j=1. Then the sequence f[�]�

n

gn2Z
converges to the maximal cusp [�1] whose accidental parabolic locus is �

0 as jnj ! 1.

In the proof of Proposition 5.2, we will make use of the following two lemmas; the
�rst is due to Canary [5] and the second is a well known technical lemma.
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Lemma 5.3 (Canary [5]). Given A > 0, there exists a constant R such that if G is
a non-elementary, torsion-free Kleinian group such that every incompressible closed
geodesic on � = 
(G)=G has hyperbolic length at least A, then for any closed curve
 on �,

lN() � Rl�();

where lN() and l�() are hyperbolic length of geodesic representatives of  in N =
H3=G and in �, respectively.

Lemma 5.4. Let F2 be a rank 2 free group and let f�n : F2 ! PSL2(C)g be a
sequence of discrete faithful representations which converges algebraically to �1. If
f�0n =  n � �n �  �1n g also converges algebraically to �0

1
for a sequence f ng of

PSL2(C), then  n converges to some element  1 in PSL2(C).

Proof of 5.2. Our argument is almost parallel to that of Kerckho� and Thurston
[10] (see also [4]). We denote by AH@S(S � I) the set of [�] 2 AH(S � I) such
that �() are parabolic for all  2 �1(@S � I). Then, for a given maximal cusp
[�] 2 @BX , AH@S(S� I) is properly embedded into V (S) so that [�] 2 AH@S(S� I)
and hence QC0(�) � AH@S(S � I). Let � be a maximal curve system on @(S � I)
as in Lemma 4.3, so that (S � I; �) is doubly incompressible. Then the sequence
f[��n] = 	�(�

�nX)gn2Z in QC0(�) is contained in

AH@S(S � I; �;K) = AH@S(S � I) \ AH(S � I; �;K)

for some K, since

l��n(�
00 � f1g) = l��n(@S � f1=2g) = 0

and

l��n(�
0 � f0g) � Rl��nX(�

0 � f0g) = RlX(�
0 � f0g);

where R is a constant in Lemma 5.3. Since AH(S � I; �;K) is compact by Theo-
rem 4.2, and AH@S(S � I) is closed in AH(S � I), AH@S(S � I; �;K) is compact.
Therefore f[��n]gn2Z has a convergent subsequence. On the other hand, since CX

is compact (Lemma 2.1), f[�]�
n

gn2Z also has a convergent subsequence. We also
denote this subsequence by the same symbol; in fact, in the following argument,
we will show that this subsequence converges to a unique maximal cusp, therefore
f[�]�

n

gn2Z converges without passing to a subsequence. Take representatives �n of
[�]�

n

converging to a representation �1. Then ��n = �n � �n are representatives of
[��n]. Therefore, there are elements  n 2 PSL2(C) such that  n � ��n � n

�1 converges
to a representation ��1.
Take a component � of �0 and let T be a component of S � �0 containing � in its

boundary. Let �0(6= �) be a component of �0 or a component of @S contained in the
boundary of T . Choose a base point x in T and regard �1(S) = �1(S; x). By abuse
of notation, � and �0 also denote the elements of �1(S; x) contained in T . Since
�n(�) = ��n(�) and �n(�

0) = ��n(�
0) and since �n converges on � and �0, by Lemma

5.4, the elements  n 2 PSL2(C) may be taken to be the identity.
One can �nd non-trivial elements 1; 2 2 �1(S; x) each of which intersects � twice

in the opposite direction and does not intersect any other components of �0, and
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that h1; 2i is a rank 2 free subgroup of �1(S; x). Then

��n(1) = �n(�
n) � �n(1) � �n(�

�n)

and

��n(2) = �n(�
n) � �n(2) � �n(�

�n)

holds. Since both �n and ��n converge on 1 and 2, Lemma 5.4 again implies
that �n(�

n) converges to an element �̂ in PSL2(C). Since �n(�) commutes with
�n(�

n) for all n, �1(�) commutes with �̂. If h�1(�); �̂i were isomorphic to Z, then
�1(�

k) = �̂l for some integers k and l, and thus �n(�
nl�k) ! id. This contradicts

the fact that [�n] are discrete faithful representations. Therefore we conclude that
h�1(�); �̂i is a rank 2 parabolic subgroup in PSL2(C). Hence, �1(�) is parabolic.
The same argument works well for all components of �0. Therefore, by Lemma 5.1,
we can conclude that [�1] is a maximal cusp whose accidental parabolic locus is
�0.

Lemma 5.5. For any two maximal curve systems � = f�jg
N
j=1 and �0 = f�jg

N
j=1

on S, there exists a maximal curve system � = fjg
N
j=1 such that the pairs (�; �)

and (�; �0) are binding S.

Proof. There exists a simple closed curve � on S such that i(�; �j) > 0 for all j (see
[6]). Put � = D�1 � � � � �D�N and put �n = �n(�). If i(�j; �) = 0 then �j = �i for
some i and hence i(�j; �n) > 0 for all n. If i(�j; �) > 0 then i(�j; �i) > 0 for some i.
In this case, i(�j; �n) > 0 for all but �nitely many n. Therefore, for su�ciently large
n, i(�j; �n) > 0 holds for all j. Fix such n and let 1 = �n. Choose simple closed
curves 2; : : : ; N so that � = fjg

N
j=1 is a maximal curve system. This � satis�es

the desired condition.

It was shown by McMullen [20] that the set of maximal cusps is dense in @BX .
Since the manner of decomposition of S into pairs of pants up to Mod(S) is �nite,
the set of maximal cusps in @BX decomposes into �nitely many orbits under the
action of Mod(S). The next theorem shows that each orbit is dense in @BX .

Theorem 5.6. For any maximal cusp [�] 2 @BX , its orbit f[�]�g�2Mod(S) under the
action of Mod(S) is dense in @BX .

Proof. Since the set of maximal cusps is dense in @BX , we only have to show that, for
arbitrary �xed two maximal cusps [�] and [�0] in @BX , the orbit f[�]

�g�2Mod(S) of [�]
contains a sequence converging to [�0]. Let � and �0 are accidental parabolic loci for
[�] and [�0], respectively. Then we can �nd a maximal curve system � = fjgNj=1 such
that the pairs (�; �) and (�; �0) are binding (Lemma 5.5). Put � = D1 � � � � �DN

and � = D�1 � � � � �D�N , where �
0 = f�jgNj=1. Then [�]�

n

converges to an maximal
cusp [�00] 2 @BX whose accidental parabolic locus is � by Proposition 5.2. Similarly
[�00]�

n

converges to [�0]. Since the action of Mod(S) is continuous at maximal cusps
(Corollary 3.2), we can �nd a desired sequence by a diagonal method.
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6. Orbits of Schottky groups and Bers boundary

In this section, we assume that S is a closed surface of genus g. We denote by SX
the set of [�] = (�;G) 2 CX such that G is a Schottky group.

Lemma 6.1. The set SX consists of one orbit under the action of Mod(S); that is,
SX = f[�]�g�2Mod(S) for any [�] 2 SX .

Proof. Let (�1; G1) and (�2; G2) be arbitrary two elements of SX . Then there exists a
homeomorphism NG1

! NG2
such that the restriction of this map to the boundaries

is a quasiconformal map 
0(G1)=G1 ! 
0(G2)=G2. Now one can see that [�2] =
[�1]

�, where � 2 Mod(S) is an isotopy class of a homeomorphism of S induced by
the quasiconformal map.

A Kleinian group is called geometrically �nite if it has a �nite sided convex fun-
damental polyhedron in H3.

Lemma 6.2 (Hejhal [9], Matsuzaki [19]). Each element [�] 2 SX is an isolated
point in CX. On the other hand, if torsion-free, geometrically �nite element [�] 2 CX

is isolated in CX , then [�] 2 SX .

Proof. The �rst statement is due to Hejhal [9], who showed that each Schottky group

[�] 2 ĈX is isolated in ĈX . Conversely, let [�] 2 CX be an isolated point of CX .

Since the same argument of Lemma 2.1 reveals that ĈX � CX is closed, [�] is also

isolated in ĈX . It was shown by Matsuzaki ([19], Theorem 3) that, if a torsion-free,

geometrically �nite element [�] 2 ĈX is isolated in ĈX , then [�] is a Schottky group.
Thus, the second statement is proved.

Remark . In Matsuzaki [19], it is obtained the necessary and su�cient condition for

a (not necessarily torsion-free) geometrically �nite element of ĈX to be isolated in

ĈX .

For [�] 2 SX , the following lemma gives a characterization of the elements of
Mod(S) which stabilize [�].

Lemma 6.3. Let [�] = (�;G) 2 SX and � 2 Mod(S). Then the followings are
equivalent:

(1) [�]� = [�],
(2) ��(ker �) = ker �, and
(3) � can be extended to a homeomorphism of the Kleinian manifold NG, where �

is regarded as a homeomorphism of X = @NG.

Proof. (1)) (2) and (3)) (2) are trivial. (2)) (1) can be seen from [19, Theorem
2]. We will show that (2)) (3). Let (f; �) be the projective structure corresponding
to [�]. We may assume that � : X ! X is a quasiconformal map. Let ~� : � ! �
be a lift of � : X ! X. If ��(ker �) = ker �, then ~� descends to a quasiconformal
map �̂ : f(�) ! f(�), because the covering group f : � ! f(�) is ker �. Since
G = �(�1(S)) is geometrically �nite and 
(G) = f(�), Marden's isomorphism
theorem [15] implies that �̂ can be extended to a G-compatible quasiconformal
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automorphism of Ĉ. This quasiconformal map can be extended to a G-compatible
homeomorphism of H3 [ Ĉ, which descends to a homeomorphism of NG.

Theorem 6.4. The set of accumulation points of SX contains @BX .

Remark . It is known by Gallo [7] that there is an accumulation point of SX which
is not contained in @BX . This can be seen also from a slight modi�cation of the
following argument.

Proof of 6.4. Let [�] = (�;G) 2 SX . We claim that, for some � 2 Mod(S), the
sequence f[�]�

n

gn2Z converges to some maximal cusp [�1] 2 @BX as jnj ! 1. If
it has shown, the similar argument in Theorem 5.6 reveals that the claim of the
theorem holds. In fact, for any element [�0] 2 @BX , there exists a sequence f�ng
in Mod(S) such that [�1]

�n converges to [�0] by Theorem 5.6. Since the action of
Mod(S) is continuous at maximal cusps (Corollary 3.2), we can �nd a sequence in
SX which converges to [�0] by a diagonal method.
Now we will show that, for some � 2Mod(S), the sequence f[�]�

n

gn2Z converges
to some maximal cusp [�1] 2 @BX as jnj ! 1. Note that the Kleinian manifoldNG

is homeomorphic to a handle bodyHg. With the identi�cationG = �1(Hg), AH(Hg)
is properly embedded in V (S) so that [�] 2 AH(Hg) and hence QC0(�) � AH(Hg).
Let � be a surface with boundary @� such that � � I is homeomorphic to Hg.
(For example, let � be a surface of type (1; g � 1).) We can �nd a pair (�0; �00) of
maximal curve systems on � which binds � (cf. Lemma 5.3). For this pair, we
de�ne a maximal curve system � on S = @(� � I) = @Hg, as

� = (�0 � f0g) [ (�00 � f1g) [ (@� � f1=2g):

Then, by Lemma 4.3, (Hg; �) is doubly incompressible and hence, by Theorem 4.2,
AH(Hg; �;K) is compact. Put � = D�1 � � � � �D�N 2Mod(S), where � = f�jg

N
j=1.

Then f[��n] = 	�(�
�nX)gn2Z is contained in a compact set AH(Hg; �;K) of V (S)

for some K, since
l��n(�) � Rl��nX(�) = RlX(�);

where R is a constant in Lemma 5.3. Hence, f[��n]gn2Z has a convergent subse-
quence. On the other hand, since CX is compact, f[�]�

n

gn2Z also has a convergent
subsequence. Take representatives ��n of [��n] converging to a representation ��1.
Then �n = ��n � �

�n are representatives of [�]�
n

. Therefore, there are elements
 n 2 PSL2(C) such that  n � �n �  n

�1 converges to a representation �1.
Take a component � of � and let T be a component of S � � containing �

in its boundary. Let �0(6= �) be a component of � contained in the boundary
of T . Choose a base point x in T and regard �1(S) = �1(S; x). By abuse of
notation, � and �0 also denotes the elements of �1(S; x) contained in T . Note
that h�; �0i is a rank 2 free subgroup of �1(S; x) which is mapped into �(Hg; x)
injectively, and that ��njh�; �0i are discrete faithful representations. Moreover since
�njh�; �0i = ��njh�; �0i, by Lemma 5.4, the elements  n 2 PSL2(C) may be taken to
be the identity.
One can �nd non-trivial elements 1; 2 2 �1(S; x) each of which intersects �

twice in the opposite direction and does not intersect any other components of �,
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and that h1; 2i is a rank 2 free subgroup of �1(S; x) which is mapped into �1(Hg; x)
injectively. Then

�n(1) = ��n(�
�n) � ��n(1) � ��n(�

n)

and
�n(2) = ��n(�

�n) � ��n(2) � ��n(�
n)

holds. Since both �n and ��n converge on 1 and 2, Lemma 5.4 again implies that
��n(�

n) converges to an element �̂ in PSL2(C). The same argument in the proof of
Proposition 5.2 reveals that h��1(�); �̂i is a rank 2 parabolic subgroup in PSL2(C).
Hence, ��1(�) is parabolic. Recall that �n(�) = ��n(�) for all n. Therefore, �1(�)
also would be a parabolic element. The same argument works well for all components
of �. Hence, by Lemma 5.1, we can conclude that [�1] is a maximal cusp whose
accidental parabolic locus is �.
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