ON THE AREA OF THE COMPLEMENT OF THE INVARIANT COMPONENT OF CERTAIN B-GROUPS AND ON SEQUENCES OF TERMINAL REGULAR B-GROUPS

HIDEKI MIYACHI

Introduction Let G be a finitely generated Fuchsian group of the first kind, and $\partial T(G)$ the Bers boundary of the Teichmüller space of G. Let χ_{φ} be the canonical isomorphism from G to the b-group corresponding to $\varphi \in \partial T(G)$ with suitable normalizations (cf. Section 1.1), and Δ_{φ} the invariant component of $\chi_{\varphi}(G)$. The main result of this paper is the following.

Theorem 1. Let $\{\varphi_n\}_{n=1}^{\infty} \subset \partial T(G)$ be a sequence corresponding to terminal regular b-groups such that

- (a) For any hyperbolic element $g \in G$, there exist $\epsilon(g)$, N(g) > 0 such that for n > N(g), if $\chi_{\varphi_n}(g)$ is loxodromic, then $|\operatorname{tr}^2(\chi_{\varphi_n}(g)) 4| \ge \epsilon(g)$, and
- (b) The Euclidean area of $\mathbb{C} \setminus \Delta_{\varphi_n}$ tends to 0 as $n \to \infty$.

Then every accumulation point of the sequence corresponds to a totally degenerate group.

This theorem is proved in Section 3.2. We know that any $\varphi_0 \in \partial T(G)$ has a sequence $\{\varphi_m\}_{m=1}^{\infty}$ corresponding to terminal regular b-groups in $\partial T(G)$ such that φ_m converges to φ_0 and that the area of $\mathbb{C} \setminus \Delta_{\varphi_m}$ tends to zero (cf. Remark (2) in Section 3.3).

This paper is organized as follows: In section 1, we fix our notations and recall some basic definitions and facts. Section 2 deals with the lower estimate of the area of the complement of the invariant component of a b-group which contains triangle groups as component subgroups. This class of b-groups, by definition, involves the set of terminal regular b-groups. In Section 3, we give the proof of Theorem 1 and several remarks about our result.

The author would like to express his hearty gratitude to Professor Yoichi Imayoshi for his constant encouragement. He would like to thank Professor Hiromi Ohtake, Professor Hiroshige Shiga, and Professor Masahiko Taniguchi for their useful advices and conversations. He also thanks Professor Yohei Komori for useful and stimulating conversations.

1. Preliminaries

1.1. Let G be a finitely generated Fuchsian group of the first kind acting on $\Sigma := \{z \in \hat{\mathbb{C}} : |z| > 1\}$. Let B(G) be the complex Banach space of holomorphic functions $\varphi(z), z \in \Sigma$ with norm $||\varphi|| = \sup(|z|^2 - 1)^2 |\varphi(z)|/4 < \infty$ which satisfy the functional equation of quadratic differentials $\varphi(g(z))g'(z)^2 = \varphi(z), g \in G$. It is well-known that dim $B(G) < \infty$ and that for every $\varphi \in B(G)$, there exists the local

Date: December 9,1998.

¹⁹⁹¹ Mathematics Subject Classification. 30F40.

univalent function $W_{\varphi}(z), z \in \Sigma$, such that the Schwarzian derivative $\{W_{\varphi}, z\}$ of W_{φ} is equal to $\varphi(z)$ and that W_{φ} forms

$$W_{\varphi}(z) = z + \sum_{n=1}^{\infty} b_n z^{-n}$$

near $z = \infty$. For $\varphi \in B(G)$, we denote by χ_{φ} the homomorphism from G into $\operatorname{M\"ob}(\hat{\mathbb{C}})$ defined by the equation $\chi_{\varphi}(g) \circ W_{\varphi} = W_{\varphi} \circ g, g \in G$.

Let T(G) be the Teichmüller space of G. T(G) can be identified with a bounded domain in B(G). We know that for $\varphi \in \partial T(G)$, W_{φ} is univalent and $G_{\varphi} := \chi_{\varphi}(G)$ is a b-group with the invariant component $\Delta_{\varphi} := W_{\varphi}(\Sigma)$ (see Section 1.2). We call $\partial T(G)$ the Bers boundary of T(G) (see [7], [9], and [12]).

1.2. For $E \subset \hat{\mathbb{C}}$, we denote by M"ob(E) the group of Möbius transformations g satisfying that g(E) = E. Through this paper, all discrete groups in $\text{M\"ob}(\hat{\mathbb{C}})$ are torsion free. A finitely generated non-elementary Kleinian group, is called a b-group if it has precisely one simply connected invariant component Δ_{Γ} of its region of discontinuity $\Omega(,)$. By Ahlfors's finiteness theorem, a b-group represents a finitely many Riemann surfaces, each with a finite Poincaré area. By Bers's second area inequality (cf.[18]), the total Poincaré area of $\Omega(,)/$, is at most twice the Poincaré area of $\Delta_{\Gamma}/$. If equality holds, , is called *regular*.

Let, be a b-group and f a conformal mapping from Σ to Δ_{Γ} . Let $G = f^{-1}$, f. If $\{f, -\} \in \partial T(G)$, is also called a *boundary group*. For a Fuchsian group G with $\infty \in \Omega(G)$, we denote by Δ_G the component of $\Omega(G)$ which contains ∞ .

Let , be a b-group. For an accidental parabolic transformation (A.P.T.) $g \in G$, we denote by A_g the axis of g (cf. [14, p.611] and [14, Lemma 1]). Let $\{g_i\}_{i=1}^s$ be a basis for A.P.T.s in , . (cf. [14, p.612]). Let π be a projection mapping from Δ_{Γ} to $\Delta_{\Gamma}/$, . Then, a system $C_{\Gamma} := \{\pi(A_g)\}_{g:A.P.T.}$ is a partition on $\Delta_{\Gamma}/$, , that is, C_{Γ} is the system of mutually disjoint simple closed geodesics (cf. [14, p.613]). The system C_{Γ} and a components of $R \setminus C_{\Gamma}$ are called the *partition with respect to* , and a *block of*, respectively.

Let , be either a b-group or a Fuchsian group with $\infty \in \Omega(,)$. For $E \subset \Delta_{\Gamma}/,$, a stabilizer group of a component of $\pi^{-1}(E)$ in , is called a *covering group of* E in , (cf. [16, p.251]). For a b-group, a covering group of a block is called a *structure subgroup*. We say that a set of structure subgroups $\{H_j\}_{j=1}^s$ of , is a *basis of structure subgroups* of , if each H_i are not mutually conjugate in , and every structure subgroup is conjugate some H_i in , . A stabilizer subgroup of a component of $\Omega(,) - \Delta_{\Gamma}$ in , is called a *component subgroup*. We say that a Kleinian group , is a *b-group with no moduli* if , is a b-group satisfying either $\Omega(,)$ is connected or each component subgroup of , is a triangle group (cf.[7]), where a Kleinian group is called a triangle group if it conjugate in Möb($\hat{\mathbb{C}}$) to the principal congruence subgroup of level 2:

$$\langle z \mapsto z+2, z \mapsto z/(-2z+1) \rangle.$$

A b-group, is called *terminal regular* if, is regular and has no moduli. A b-group, is called *totally degenerate* if $\Omega(,)$ is connected.

1.3. Assume that $f(z) = z + b_0 + \sum_{k=1}^{\infty} b_k z^{-k}$ is univalent on Σ . Then the following inequality, called *the Golusin's inequality*, holds:

(1)
$$\sum_{k=1}^{\infty} k \left| \sum_{l=1}^{N} b_{kl} \lambda_l \right|^2 \le \sum_{l=1}^{N} \frac{|\lambda_l|^2}{l},$$

for any $\lambda_l \in \mathbb{C}$, $(l = 1, 2, \dots, N)$, and

$$\log \frac{f(z) - f(\zeta)}{z - \zeta} = -\sum_{k,l=1}^{\infty} b_{kl} z^{-k} \zeta^{-l} \quad (z, \zeta \in \Sigma).$$

(cf. [3, p.91]). The coefficients $\{b_{kl}\}_{k,l=1}^{\infty}$ are called the *Grunsky coefficients of f*. This inequality induces the following:

(2)
$$\left|\sum_{k,l=1}^{\infty} b_{kl} \lambda_k \mu_l\right|^2 \le \sum_{l=1}^{\infty} \frac{|\lambda_l|^2}{l} \sum_{l=1}^{\infty} \frac{|\mu_l|^2}{l}$$

for $\lambda_k, \mu_k \in \mathbb{C}$ (k = 1, 2, ...) such that $\{k^{-1/2}\lambda_k\}_{k=1}^{\infty}, \{k^{-1/2}\mu_k\}_{k=1}^{\infty} \in l^2$.

2. The area of the complement of an invariant component

In this section, we will give the lower estimate of the Euclidean area of the complement of the invariant component of a b-group containing triangle groups as component groups. For a measurable set $E \subset \mathbb{C}$, we denote by Area(E) the Lebesgue measure of E.

2.1. Let $F < \text{M\"ob}(\hat{\mathbb{C}})$ be a triangle group so that $\infty \in \Omega(F)$. Let $\{A, B\}$ be a generator of F such that A, B, and AB are parabolic. Then, we have

Lemma 1. For
$$g(z) = (az + b)/(cz + d), (ad - bc = 1), let c_g = |c|$$
. Then
Area $(\Omega(F) \setminus \Delta_F) = 4\pi \{2(c_A c_B + c_B c_{AB} + c_{AB} c_A) - (c_A^2 + c_B^2 + c_{AB}^2)\}^{-1}$
 $\geq 4\pi (c_A^2 + c_B^2 + c_{AB}^2)^{-1}$

Proof. The direct calculation gives that the interior of the circumscribing circle of the triangle whose edges has lengths x,y, and z has the area

$$\pi \left\{ 2 \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} \right) - \left(\frac{y^2}{z^2 x^2} + \frac{z^2}{x^2 y^2} + \frac{x^2}{y^2 z^2} \right) \right\}^{-1}$$

Let a, b and c be fixed points of A, B and AB respectively. By Proposition 12.1 in [11, p.571],

$$c_A = \frac{2|c-b|}{|c-a||a-b|}, \qquad c_B = \frac{2|a-c|}{|a-b||b-c|}, \text{ and } c_{AB} = \frac{2|b-a|}{|b-c||c-a|}.$$

Therefore, we have the assertion.

2.2. We have the following lemma (cf. [22, p.372, Section 4]).

Lemma 2. Let $A \in \operatorname{M\"ob}(\Sigma)$ with $A(\infty) \neq \infty$ and $g \in \operatorname{M\"ob}(\widehat{\mathbb{C}})$ a parabolic element. Suppose that there exists a univalent function f from Σ into $\widehat{\mathbb{C}}$ with normalization f(z) = z + O(1) near $z = \infty$ such that $g \circ f = f \circ A$. Then

(3)
$$c_q^2 \le 4(1 - |A'(0)|) / \operatorname{tr}^2(A) |A'(0)|^3$$

Proof. Let $\{b_{kl}\}_{k,l=1}^{\infty}$ be the Grunsky coefficient of f. By definition,

$$g(\infty) - g^{-1}(\infty) = f(A(\infty)) - f(A^{-1}(\infty))$$

= $(A(\infty) - A^{-1}(\infty)) \exp\left\{-\sum_{k,l=1}^{\infty} b_{kl}A(\infty)^{-k}(A^{-1}(\infty))^{-l}\right\}.$

Since $A(\infty) = \{\overline{A(0)}\}^{-1}$, |A(0)| < 1, and $|A(0)| = |A^{-1}(0)|$, $\{k^{-1/2}\overline{A(0)}^k\}_{k=1}^{\infty}$, $\{k^{-1/2}\overline{A^{-1}(0)}^k\}_{k=1}^{\infty}$ are contained in l^2 . By (2), we have

$$\begin{aligned} \frac{|\operatorname{tr}^2(g)|}{c_g^2} &= |g(\infty) - g^{-1}(\infty)|^2 \\ &= |A(\infty) - A^{-1}(\infty)|^2 \exp\left\{-2\operatorname{Re}\left(\sum_{k,l=1}^{\infty} b_{kl}\overline{A(0)}^k (\overline{A^{-1}(0)})^l\right)\right\} \\ &\geq \frac{\operatorname{tr}^2(A)|A'(0)|}{1 - |A'(0)|} \exp\left\{-2\left(\sum_{k=1}^{\infty} \frac{|A(0)|^{2k}}{k} \sum_{k=1}^{\infty} \frac{|A^{-1}(0)|^{2k}}{k}\right)^{1/2}\right\} \\ &= \frac{\operatorname{tr}^2(A)|A'(0)|}{1 - |A'(0)|} \exp\left\{2\log(1 - |A(0)|^2)\right\} = \frac{\operatorname{tr}^2(A)|A'(0)|^3}{1 - |A'(0)|}.\end{aligned}$$

Since g is parabolic, we conclude (3).

2.3. For a parabolic
$$A \in \text{M\"ob}(\Sigma)$$
 and $\epsilon > 0$, the ϵ -horocycle of A is, by definition, the cycle C in $\overline{\Sigma}$ through the fixed point of A such that the hyperbolic distance between z and $A(z)$ is equal to ϵ for $z \in C$. We denote by $d(A, \epsilon)$ the hyperbolic distance between ∞ to the ϵ -horocycle of A in Σ . For a hyperbolic $A \in \text{M\"ob}(\Sigma)$, we denote by $d(A)$ the hyperbolic distance between ∞ to the axis of A in Σ .

For a Fuchsian group G acting on Σ and $\epsilon > 0$, by the ϵ -thick part thick_{ϵ}(G) for G we mean that the set of points $z \in \Sigma$ such that the hyperbolic distance between z and g(z) is more than ϵ for all parabolic $g \in G$. For b-group, , let f be a conformal mapping from Σ to Δ_{Γ} . We define the ϵ -thick part thick_{ϵ}(,) for , by $f(\text{thick}_{\epsilon}(f^{-1}, f))$.

Let P be a subset of Σ/G , where G is a Fuchsian group. For $\epsilon > 0$, we denote $P_{\epsilon} := (\operatorname{thick}_{\epsilon}(G)/G) \cap P$. We say that a closed curve in Σ/G is the ϵ -horocycle if there exists a primitive parabolic $g \in G$ so that C is the image of the ϵ -horocycle of g by the projection. For a rectifiable curve C in $R := \Sigma/G$, we denote by $l_R(C)$ the hyperbolic length of C on R. Let P be the Nielsen kernel of a Riemann surface homeomorphically to a three punctured sphere (cf.[6]). Let j be the number of cusps of P. In this paper, P is called the *pair of pants of type* (3-j,j) (cf. Figure 1.)

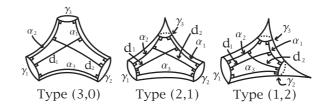


FIGURE 1. Pairs of Pants

Let $\epsilon_0 = 2 \operatorname{arcsinh1}$ and $\epsilon < \epsilon_0$. Let *P* be a pair of pants pf type (3 - j, j). Then there exist geodesics $\{\gamma_i\}_{i=1}^{3-j}, \{\alpha_i\}_{i=1}^3, \{d_i\}_{i=1}^2, \epsilon$ -horocycles $\{\gamma_i\}_{j=3-j+1}^3, \text{ if } j \neq 0$, and the point $q \in P$ as in Figure 1 by the Collar theorem (cf. [8, Theorem 4.4.6]). From now on, we fix $\epsilon < \epsilon_0$.

The following lemma can be proved in the argument similar to that of Theorem 2.4.3 and 3.1.8 in [8] and Lemma 4.4 in [20]. Hence we omit the proof. The author would like to thank Professor Toshihiro Nakanishi for teaching about the joint work [20] with Professor Marjatta Näätänen.

Lemma 3. Let P be a pair of pants of type (3 - j, j). Let $\{\gamma_i\}_{i=1}^3$, $\{\alpha_i\}_{i=1}^3$, $\{d_i\}_{i=1}^2$, and $q \in P$ as in Figure 1. Let d_3 be the shortest geodesic connecting γ_3 and α_3 . Let l_i and $l(d_i)$ be the lengths of γ_i and d_i respectively. Then

(a) d_3 passes through q.

(b) Let $L_i = \cosh(l_i/2)$ $(1 \le j \le 3-j)$, then (b-1) If P is of type (3,0), then

$$\cosh(l(d_i)) = \frac{(L_1^2 + L_2^2 + L_3^2 + 2L_1L_2L_3 - 1)^{1/2}}{\sinh(l_i/2)}, \text{ for } i = 1, 2, 3.$$

(b-2) If P is of type (2,1), then

$$\cosh(l(d_i)) = \frac{L_1 + L_2}{\sinh(l_i/2)}, \text{ for } j = 1, 2, \text{ and } e^{l(d_3)} = \frac{L_1 + L_2}{\sinh(\epsilon/2)}.$$

(b-3) If P is of type (1, 2), then

$$\cosh(l(d_1)) = \frac{L_1 + 1}{\sinh(l_1/2)}, \text{ and } e^{l(d_i)} = \frac{L_1 + 1}{\sinh(\epsilon/2)}, \text{ for } i = 2, 3.\square$$

2.4. Let , be a b-group which contains triangle groups as structure groups. We denote by $\{P_k\}_{k=1}^{s_0}$ the blocks of , . Let π is the projection from Δ_{Γ} to R and f the conformal mapping from Σ to Δ_{Γ} .

We may assume that for $1 \le k \le s$, P_k is a pair of pants of type $(3 - j_k, j_k)$. Let $\{\gamma_{k,j}\}_{j=1}^3$ be boundary curves of $(P_k)_{\epsilon}$, We assume that for $1 \le j \le 3 - j_k$, $\gamma_{k,j}$ is a geodesic (see Figure 1).

Lemma 4. Fix $0 < \epsilon < \epsilon_0$ so that $p_0 := \pi \circ f(\infty) \in R_{\epsilon}$. Then, for $k = 1, \ldots, s$, there exist a structure group , k corresponding to P_k and generators $\{C_{k,i}\}_{i=1}^3$ of $H_k := f^{-1}$, kf such that

- (i) For j = 1, 2, 3, if C_{k,i} is hyperbolic (resp. parabolic), the the axis (resp. ε-horocycle) of χ_φ⁻¹(C_{k,i}) maps to γ_{k,i} by π ∘ f.
- (ii) $C_{k,3}C_{k,2}C_{k,1} = id$

(iii) $d(C_{k,i})$ (resp. $d(C_{k,i}, \epsilon)$) $\leq \operatorname{diam}(R_{\epsilon}) + \delta(k, i)$,

where $\delta(k, i)$ is $l(d_i)$ as in Lemma 3 with respect to curves $\gamma_i := \gamma_{k,i}$, i = 1, 2, 3 and $P := P_k$, and diam(E) is the hyperbolically diameter of $E \subset R$.

Proof. Fix $k \in \{1, \ldots, s\}$. We only show the case where P_k is of type (3, 0). Another cases are proved in the similar manner.

On P_k , let $\{\gamma_{k,i}\}_{i=1}^3$, $\{\alpha_{k,i}\}_{i=1}^3$, and $\{d_{k,i}\}_{i=1}^3$ be geodesics as in Lemma 3. Let p_k be a intersection point of $d_{k,1}$ and $d_{k,2}$. By Lemma 3, $l_R(d_{k,i}) = \delta(k,i)$. Take a geodesic β_k in R connecting p_0 and p_k such that $l_R(\beta_k) \leq \operatorname{diam}(R_{\epsilon})$. We define the curve $\beta_{k,i} \subset \beta_k \cup d_{k,i}$ connecting p_0 and $\gamma_{k,i}$ so that

$$l_R(\beta_{k,i}) \leq \operatorname{diam}(R_{\epsilon}) + \delta(k,i)$$

We construct a loop $c'_{k,i} := \beta_{k,i} \gamma_{k,i} \beta_{k,i}^{-1}$ with an initial point p_0 . We give an orientation for $c'_{k,i}$ such that $[c'_{k,1}][c'_{k,2}][c'_{k,3}] = 1$, where [-] is an equivalence class in $\pi_1(R, p_0)$, the fundamental group of R with the base point p_0 .

We take $C_{k,i} \in f$, f^{-1} corresponding to $[c'_{k,i}]$ by the canonical isomorphism between $\pi_1(R, p_0)$ and f, f^{-1} . Let $z_k \in \Sigma$ be the end point of the lift of β_k whose initial point is the point at ∞ . Let , $_k$ be a structure group which stabilizes the component of $\Delta_{\Gamma} \setminus \bigcup_{g:A.P.T} A_g$ containing $f(z_k)$. Then, by definition, the system $\{C_{k,i}\}_{i=1}^3$ generates H_k and satisfies the assertion of lemma. \Box

2.5. We now prove the following theorem.

Theorem 2. Let, be a b-group such that $\infty \in \Delta_{\Gamma}$ and that the logarithmic capacity of the limit set of, is equal to 1. Take $0 < \epsilon < \epsilon_0$ such that $\infty \in \text{thick}_{\epsilon}(,)$. Let $\{P_k\}_{k=1}^{s_0}$ be blocks of, each of which is a pair of pants. Then

Area
$$(\mathbb{C} \setminus \Delta_{\Gamma}) \ge 64\pi \sum_{k=1}^{s_0} A(R, P_k, \epsilon),$$

where $R = \Delta_{\Gamma}/,$,

$$A(R, P_k, \epsilon) := \left\{ \sum_{i=1}^{3} S_{k,i}(\sinh^2(l_{k,i}/2), \operatorname{diam}(R_{\epsilon}) + \delta(k, i)) \right\}^{-1}, and$$

$$S_{k,i}(x, d) := \left\{ \begin{aligned} (x-4)\cosh^2 d \ ((x-4)\cosh^2 d + 4)^2/x, & \text{if } 1 \le i \le 3 - j_k \\ 16\sinh^2(\epsilon/2)e^{2d}(1 + \sinh^2(\epsilon/2)e^{2d})^2, & \text{otherwise.} \end{aligned} \right\}$$

Here $(3 - j_k, j_k)$ is the type of P_k , $\{l_{k,i}\}_{i=1}^{3-j_k}$ and $\{\delta(k,i)\}_{i=1}^3$ are defined as in Lemma 4, and set $l_{k,i} = 0$ if $3 - j_k + 1 \le i \le 3$. Especially, for M > 0 and some k, if lengths of all closed geodesics in the boundary of P_k are less than M, then there exists A > 0, depend only on R, M, and ϵ , so that $\operatorname{Area}(\mathbb{C} \setminus \Delta_{\Gamma}) \ge A$.

Proof. The direct calculations shows that if $A \in M\ddot{o}b(\Sigma)$ is hyperbolic,

(4)
$$|A'(0)| = 4/(\operatorname{tr}^2(A) - 4 \tanh^2(d(A))) \cosh^2(d(A)),$$

and if A is parabolic and $\infty \in \text{thick}_{\epsilon}(\langle A \rangle)$,

(5)
$$|A'(0)| = 1/(1 + \sinh^2(\epsilon/2)e^{2d(A,\epsilon)}).$$

Let f be the conformal mapping from Σ to Δ_{Γ} such that f(z) = z + O(1) near $z = \infty$ (cf. [21, p.207, Corollary 9.9]). For $k \in \{1, \ldots, s\}$. let H_k and $\{C_{k,i}\}_{i=1}^3$ be as in Lemma 4. Since $\infty \in \text{thick}_{\epsilon}(\langle g \rangle)$ for every parabolic $g \in G$, by Lemma 2, and (4) and (5), we have

$$(c_{fC_{k,i}f^{-1}})^2 \leq S_{k,i}(\operatorname{tr}^2(C_{k,i}), d(C_{k,i}))/16 \text{ for } i = 1, 2, 3.$$

Hence, by Lemma 1 and 4, we conclude the assertion.

Corollary 1. For a b-group , , let f be a conformal mapping from Σ to Δ_{Γ} . Then it holds that

$$\|\{f,-\}\| \le \frac{3}{2} \{1 - 64 \sum_{k} A(\Delta_{\Gamma}/, P_{k}, \epsilon_{0})\}^{1/2},\$$

where each P_k is a block of, which is a pair of pants.

Let $G := f^{-1}$, f. Since G is torsion free, for $\varphi \in B(G)$, it holds $\|\varphi\| =$ Proof. $\sup\{(|z|^2-1)^2|\varphi(z)|/4 \mid z \in \text{thick}_{\epsilon_0}(G)\}$ (cf. [23, Lemma 1] and [4, p.198, Exercise [8.2]). Hence by an argument similar to that of Lemma 6.7 in [9, p.151] (the Nehari-Kraus theorem), we conclude the assertion.

3. Sequences of terminal regular b-groups

In this section, by using Theorem 2, we study a behavior of a sequence corresponding to terminal regular b-groups contained in a Bers boundary.

3.1. Let G be a finitely generated Fuchsian group of the first kind acting on Σ . For $\varphi \in \partial T(G)$, we denote by \mathcal{C}_{φ} the partition with respect to G_{φ} . We show the following lemma.

Lemma 5. Let $\{\varphi_m\}_{m=1}^{\infty} \subset \partial T(G)$ be a sequence corresponding to terminal regular b-groups. Then there exist a subsequence $\{\varphi_{m_j}\}_{j=1}^{\infty}$, a maximal partition $\{C_k\}_{k=1}^{3p-3+n}$ on R, a number $k_0 \in \{0, 1, \dots, 3p-3+n\}$, and homeomorphisms $\{f_j\}_{j=1}^{\infty}$ of R onto itself such that

(1) For $j \ge 1$, $C_{\varphi_{m_j}} = \{f_j(C_k)\}_{k=1}^{3p-3+n}$, (2) If $k_0 > 0$, then $l_R(f_j(C_k)) \to \infty$ as $j \to \infty$ for $1 \le k \le k_0$, and (3) If $k_0 < 3p - 3 + n$, then $f_j(C_k) = C_k$ for $k > k_0$.

If, in addition, $\operatorname{Area}(\mathbb{C} \setminus \Delta_{\varphi_{m_i}}) \to 0$ as $j \to \infty$, then it also holds that

(4) No component of $R \setminus \bigcup_{k>k_0} C_k$ is a pair of pants, and hence $k_0 > 0$.

Since the number of graphs induced by the maximal partition on RProof is finite (cf.[2],[11]), we may assume that all graphs induced from $\{\mathcal{C}_{\varphi_m}\}_{m=1}^{\infty}$ are the same. Let us denote $\mathcal{C}_{\varphi_1} = \{C'_k\}_{k=1}^{3p-3+n}$. Then, there exist homeomorphisms $\{h_m\}_{m=1}^{\infty}$ of R onto itself such that $\mathcal{C}_{\varphi_m} = \{h_m(C'_k)\}_{k=1}^{3p-3+n}$ (cf.[8, Appendix]). By taking the subsequence of $\{h_m\}_{m=1}^{\infty}$ and renumbering the curves $\{C'_k\}_{k=1}^{3p-3+n}$ if necessary, we may suppose that there exist $k_0 \in \{0, 1, \dots, 3p - 3 + n\}$ and M > 0such that if $k_0 > 0$, then $l_R(h_m(C'_k)) \to \infty$ as $m \to \infty$ for $1 \le k \le k_0$, and that if $k_0 < 3p - 3 + n$, then $l_R(h_m(C'_k)) < M$ for $k_0 < k \le 3p - 3 + n$ and $m \ge 1$.

Since the number of closed geodesics in R whose hyperbolic length are less than M is finite (cf.[2]), there exists a subsequence $\{\varphi_{m_i}\}_{i=1}^{\infty}$ such that $h_{m_i}(C'_k) =$ $\begin{array}{l} h_{m_{l}}(C'_{k}) \text{ for } j, l \geq 1 \text{ and } k_{0} < k \leq 3p - 3 + n. \\ \text{Let } f_{j} = h_{n_{j}} \circ (h_{n_{1}})^{-1} \text{ and } C_{k} = h_{n_{1}}(C'_{k}) \text{ for } j \geq 1 \text{ and } 1 \leq k \leq 3p - 3 + n. \end{array}$

Then, by definition, the subsequence $\{\varphi_{m_j}\}_{j=1}^{\infty}$, the partition $\{C_k\}_{k=1}^{3p-3+n}$ on R, the number k_0 , and homeomorphisms $\{f_j\}_{j=1}^{\infty}$ satisfy (1)-(3) in this lemma. From now on, we assume that $\operatorname{Area}(\mathbb{C} \setminus \Delta_{\varphi_{m_j}}) \to 0$ as $j \to \infty$. Suppose that there exists a component P of $P \setminus \mathbb{H}$.

there exists a component P_i of $R \setminus \bigcup_{k > k_0} C_k$ such that P_i is a pair of pants. Since $\{C_k\}_{k>k_0} \subset \mathcal{C}_{\varphi_{m_i}}$ for each $j \geq 1$ and P_i does not contain the simple closed geodesic which is not homotopic to boundary components of P_i , P_i is a block of $G_{\varphi_{m_i}}$ for every $j \geq 1$. Hence each G_{φ_m} contains a triangle group as a structure group corresponding to P_i .

Take $\epsilon > 0$ so that $\infty \in \text{thick}_{\epsilon}(G)$. Since the lengths of all closed geodesics in the boundary of P_i are less than M, by Theorem 2, there exists A > 0, depend only on $R, M, \text{ and } \epsilon$ such that

$$\operatorname{Area}(\mathbb{C} \setminus \Delta_{\varphi_{m_{\mathcal{I}}}}) \ge A$$

for $j \geq 1$. This contradicts the assumption.

3.2. To prove Theorem 1, it suffices to show the following proposition.

Proposition 6. Let $\{\varphi_m\}_{m=1}^{\infty}$ be a sequence corresponding to terminal regular b-groups in $\partial T(G)$ satisfying (1)-(3) in Lemma 5 with respect to a partition $\{C_k\}_{k=1}^{3p-3+n}$, a number k_0 , and homeomorphisms $\{f_m\}_{m=1}^{\infty}$ of R onto itself. Suppose that the sequence satisfies (a) in Theorem 1 and converges to $\varphi_0 \in \partial T(G)$. Then G_{φ_0} is a b-group with no moduli such that $C_{\varphi_0} = \{C_k\}_{k>k_0}$. Especially, if no component of $R \setminus \bigcup_{k>k_0} C_k$ is a pair of pants, then G_{φ_0} is totally degenerate.

Proof. We prove the case $k_0 < 3p - 3 + n$. The case where $k_0 = 3p - 3 + n$ is proved by the similar manner.

Let $g_k \in G$ be primitive hyperbolic elements corresponding to C_k for $1 \leq k \leq 3p-3+n$. We denote by $\{P_i\}_{i=1}^{s_0}$ the components of $R \setminus \bigcup_{k > k_0} C_k$ each of which is not a pair of pants. Let $\{P_i\}_{i=s+1}^{s_1}$ be components of $R \setminus (\bigcup_{k > k_0} C_k \cup \bigcup_{i=1}^{s_0} P_i)$. Fix a stabilizer group H_i corresponding to P_i in G. Let $G_{i,m} = \chi_{\varphi_m}(H_i)$ for $m \geq 0$. For $m \geq 1$, since G_{φ_m} is a terminal regular b-group and, P_i is not a pair of pants for $1 \leq i \leq s_0$, $G_{i,m}$ is also a terminal regular b-group such that $\Delta_{G_{i,m}}/G_{i,m}$ is homeomorphic to P_i if $1 \leq i \leq s_0$ (cf.[11]). By definition, for $i > s_0$, $G_{i,m}$ is a triangle group.

We first show that $\{G_{i,0}\}_{i=1}^{s_1}$ is a basis of the structure groups of G_{φ_0} . It is clear that for $k > k_0$, $\chi_{\varphi_0}(g_k)$ is an A.P.T. in G_{φ_0} . Since $G_{i,0} = \chi_{\varphi_0}(H_i)$, it suffices to show that $\chi_{\varphi_0}(g)$ is loxodromic for any hyperbolic element $g \in G$ which is not conjugate to a power of g_k for any k.

If the geodesic corresponding to g meets C_k for some $k > k_0$, then $\chi_{\varphi_0}(g)$ is loxodromic. Hence we can take $\epsilon(g)$, N(g) satisfying (a) for g in this theorem. Thus we assume that the geodesic corresponding to g is contained in some P_k . By (2) in Lemma 5, there exists N(g) > 0 so that $\chi_{\varphi_m}(g)$ is loxodromic for $m \ge N(g)$. By assumption (a), there exist $\epsilon(g) > 0$ such that for $m \ge N(g)$, inequalities

$$|\operatorname{tr}^2(\chi_{\varphi_m}(g)) - 4| \ge \epsilon(g)$$

hold. Since $\chi_{\varphi_m}(g) \to \chi_{\varphi_0}(g)$ as $m \to \infty$, we have that $\operatorname{tr}^2(\chi_{\varphi_0}(g)) \neq 4$. Since χ_{φ_0} is an isomorphism and G is torsion free, $\chi_{\varphi_0}(g)$ is loxodromic.

Thus, if $1 \leq i \leq s_0$, $G_{i,0}$ is either a quasi-Fuchsian group or a totally degenerate group without A.P.T.s (cf.[15], [17, p.225, Theorem D.21], and [17, p.268, Theorem C.25]). We assume that $G_{i,0}$ is a quasi-Fuchsian group for some *i*. By the arguments above, for $m \geq 1$, the isomorphism $\chi_{\varphi_m} \circ \chi_{\varphi_0}^{-1}$ from $G_{i,0}$ onto $G_{i,m}$ is allowable in the sence of Bers (cf. [5, p.574]). Since $\chi_{\varphi_m} \circ \chi_{\varphi_0}^{-1}$ converges to the identity on $G_{i,0}$, by the quasiconformally stability for quasi-Fuchsian groups (cf. [5, Proposition 6]), $G_{i,m}$ is quasi-Fuchsian for sufficiently large *m*. This is contradiction. Thus, $G_{i,0}$ is a totally degenerate group without A.P.T.s for $i = 1, \ldots, s_0$. Thus, G_{φ_0} is a b-group with no moduli such that $\mathcal{C}_{\varphi_0} = \{C_k\}_{k > k_0}$.

3.3. Remark. (1) Any sequence corresponding to terminal regular b-groups which converges to $\varphi_0 \in \partial T(G)$ corresponding to totally degenerate group without A.P.T.s satisfies (a) and (b) in Theorem 1.

(2) For any $\varphi_0 \in \partial T(G)$, there exists $\{\varphi_m\}_{m=1}^{\infty}$ in $\partial T(G)$ corresponding to terminal regular b-groups such that (2-i) Area $(\mathbb{C} \setminus \Delta_{\varphi_m})$ tends to zero, and (2-ii) $\{\varphi_m\}_{m=1}^{\infty}$ converges to φ_0 .

(3) Any totally degenerate group G_{φ_0} with A.P.T.s has $\{\varphi_m\}_{m=1}^{\infty}$ in $\partial T(G)$ conresponding to terminal regular b-groups which converges to φ_0 such that (3-i) Area $(\mathbb{C} \setminus \Delta_{\varphi_m})$ tends to zero, and (3-ii) $\{\varphi_m\}_{m=1}^{\infty}$ does not satisfy (a) in Theorem 1.

(4) If dim T(G) > 1, there exists $\{\varphi_m\}_{m=1}^{\infty}$ corresponding to terminal regular b-groups in $\partial T(G)$ satisfying (a) in Theorem 1 such that $\{G_{\varphi_m}\}_{m=1}^{\infty}$ converges to a b-group but not a totally degenerate group.

Proof. Before proving (1)-(4) above, we note that $\{\varphi_m\}_{m=1}^{\infty}$ corresponding to terminal regular b-groups in $\partial T(G)$ which converges to $\varphi_0 \in \partial T(G)$ corresponding to a totally degenerate group without A.P.T.s satisfies that $\operatorname{Area}(\mathbb{C} \setminus \Delta_{\varphi_m}) \to 0$ as $m \to \infty$. Indeed, it follow from the following two facts; (1) The measure of $\mathbb{C} \setminus \Delta_{\varphi_0} = \Lambda(G_{\varphi_0})$ is zero by Thurston's theorem (cf.[18]), and (2) $\{\Delta_{\varphi_m}\}_{m=1}^{\infty}$ converges to Δ_{φ_0} in the sence of kernel convergence with respect to $w_0 = \infty$ (cf. [21, Theorem 1.8]).

Let us prove Remark (1)-(4).

(1) By the argument above, the sequence satisfies (a) in Theorem 1. Since G_{φ_0} has no A.P.T.s, that also satisfies (a) in Theorem 1.

(2) Since the set of differentials corresponding to terminal regular b-groups and the set of those corresponding to totally degenerate groups without A.P.T.s are dense in $\partial T(G)$ (cf.[19] and [5, Theorem 14]), by the standard arguments and Remark (1), we find a sequence satisfying (2-i) and (2-ii). This remark was pointed out to the author by Professor Hiroshige Shiga.

(3) Let $\{g_k\}_{k=1}^s$ be hyperbolic elements in G so that $\{\chi_{\varphi_0}(g_k)\}_{k=1}^s$ is a basis of A.P.T.s of G_{φ_0} . Take $L_0 > 0$ so that $2 \cosh(L_0/2) := \max_{1 \le k \le s} |\operatorname{tr}(g_k)|$. By applying the argument in Lemma 5 for $\{\psi_m\}_{m=1}^\infty$ corresponding to totally degenerate groups without A.P.T.s in $\partial T(G)$ which converges to φ_0 , there exists a terminal regular b-group G_{φ_m} such that $l_{\Sigma/G}(C) > mL_0$ for each $C \in \mathbb{C}_{\varphi_m}$, $\|\varphi_m - \psi_m\| < 1/m$, and that $\operatorname{Area}(\mathbb{C} \setminus \Delta_{\varphi_m}) < 1/m$ for $m \ge 1$. By the definition of L_0 , $\chi_{\varphi_m}(g_k)$ is loxodromic for each $m \ge 1$ and $k = 1, \ldots, s$.

Since $\chi_{\varphi_0}(g_k)$ is parabolic, $\{\varphi_m\}_{m=1}^{\infty}$ satisfies (3-i) and (3-ii).

(4) Let $R = \Sigma/G$ and $\mathcal{C} = \{C_k\}_{k=1}^d$ a maximal partition on R. Let $\{P_s\}_{s=1}^{s_1}$ be the components of $R \setminus \bigcup_{k \neq 1} C_k$ such that $C_1 \subset P_1$. Since $d = \dim T(G) > 1$, we may suppose that $s_1 > 1$ and that P_2 is a pair of pants. Let R_1 be the infinite Nielsen extension of P_1 (cf.[6]), , 1 the Fuchsian group of R_1 , and $(, 1)_{\psi_0}$ a totally degenerate group without A.P.T.s. We define $\{\varphi_m\}_{m=1}^{\infty}$ of a sequence corresponding to terminal regular b-groups and $\varphi_0 \in \partial T(G)$ satisfying the conditions (a), (b), (c), and (d) in Theorem 3 in Section 3.4 for the partition \mathcal{C} , $s_0 = 1$, and the boundary group $F_1 := (, 1)_{\psi_0}$. Then $\{\varphi_m\}_{m=1}^{\infty}$ satisfies the assertion.

If dim T(G) = 1, then G_{φ} has an A.P.T. if and only if G_{φ} is a terminal regular b-group. By Remark (1) and the proof of Proposition 6, we have

Corollary 2. Suppose that dim T(G) = 1. For a sequence Φ corresponding to terminal regular b-groups in $\partial T(G)$ which converges to $\varphi_0 \in \partial T(G)$, the following three conditions are equivalent:

- (1) G_{φ_0} is a totally degenerate group.
- (2) Φ contains a subsequence with (a) and (b) in Theorem 1.

(3) Φ contains a subsequence which consists of mutually distinct elements and satisfies (a) in Theorem 1.

3.4. To complete the proof of Remark (4) in the previous subsection, we will show the following theorem.

Theorem 3. Let G be a finitely generated Fuchsian group of the first kind acting on Σ and $R = \Sigma/G$. Let $C = \{C_k\}_{k=1}^{k_0}$ be a partition on R and $\{P_s\}_{s=1}^{s_0}$ the components of $R \setminus \bigcup_{k=1}^{k_0} C_k$ each of which is not a pair of pants. For $i = 1, \ldots, s_0$, let F_i be a boundary group such that Δ_{F_i}/F_i is homeomorphic to P_i . Then there exist $\varphi_0 \in \partial T(G)$ and $\{\varphi_m\}_{m=1}^{\infty}$ corresponding to terminal regular b-groups such that

- (a) $\varphi_m \to \varphi_0 \text{ as } m \to \infty$,
- (b) $\mathcal{C} \subset \mathcal{C}_{\varphi_m}$ for $m \ge 0$, and
- (c) A covering group of P_i in G_{φ_0} is quasiconformally conjugate to F_i ,

If, in addition, each F_i is a totally degenerate group without A.P.T.s, then

(d) Φ satisfies (a) in Theorem 1.

This theorem is proved in Section 3.6.

3.5. The following lemma is well-known. However, the author has never seen what is stated in this form.

Lemma 7. Let R and S be a hyperbolic Riemann surface of type (p, n). Let P be a domain in R such that P is homeomorphic to R and that the inclusion mapping i from P to R is homotopic to a homeomorphsm of P onto R. Then, for $K \ge 1$, there exists $K_0 = K_0(K, P, p, n) > 1$ such that if a K-quasiconformal (q.c.) mapping h from P into S which is homotopic to a homeomorphism from P onto S exists, there exists a K_0 -q.c.mapping g from R to S so that $g \circ i$ is homotopic to h.

Proof. Let T(R) be a Teichmüller space of R (cf. [9, p.120]). Let M be a Riemann surface of type (p, n). If there exists a K-q.c.mapping h_M from P to M homotopic to a homeomorphism of P onto M, then there exists a q.c.mapping $f_{(P,K,M)}$ from R onto S such that $f_{(P,K,M)} \circ i$ is homotopic to h_M . We denote by X(P,K) the closure of the set of such $[M, f_{(P,K,M)}]$ in T(R). Let \hat{i} be a homeomorphism form P to R homotopic to i. Let $\{\gamma_i\}_{i=1}^N$ be a system of simple closed geodesics fill up R (cf. [10, p.249]). By the decreasing property for the hyperbolic metric and Wolpert's Theorem (cf. [8, p.153]), $\sum_{i=1}^N l_S(f_{(P,K,M)}(\gamma_i)) \leq \sum_{i=1}^N K l_P(\hat{i}^{-1}(\gamma_i))$. Hence X(P,K) is compact (cf. [10, Lemma 3.1]). Let d_0 be the diameter of X(P,K) with respect to the Teichmüller distance of T(R) (cf. [9, p.125]). Then, $K_0 := e^{d_0}$ satisfies the assertion. □

3.6. Let us prove Theorem 3. We only show the case where $s_0 = 1$. Another cases are proved by the similar manner.

Let $\{P_i\}_{i=1}^s$ be the components of $R \setminus \bigcup_{k=1}^{k_0} C_k$ such that P_1 is not a pair of pants. Let \hat{R}_1 be the infinite Nielsen extension of P_1 . Since $R_1 := \Delta_{F_1}/F_1$ is homeomorphic to P_1 , there exists a K_1 -q.c.mapping h_0 from \hat{R}_1 onto R_1 . Let $Q := h_0(P_1)$, ian inclusion mapping from Q to R_1 . Then, by definition, i is homotopic to a homeomorphism from Q onto R_1 . Let f be a conformal mapping from Σ to Δ_{F_1} and $\prod_{i=1}^{i=1} f^{-1}F_1 f$. We take $\{\psi_m\}_{m=1}^{\infty}$ in $\partial T(\pi_i)$ corresponding to terminal regular

b-groups which converges to $\psi_0 := \{f, -\} \in \partial T(, 1)$. Let $\mathcal{C}_{\psi_m} = \{C'_{k,m}\}_{k=1}^{k_1}$ and $C_{k,m}$ the geodesic in P_1 (and hence in R) such that $i \circ h_0(C_{k,m})$ is homotopic to $C'_{k,m}$ for $k = 1, \ldots, k_1$. Then, $\mathcal{C}_m := \{C_{i,m}, C_j\}_{i=1,\ldots,k_1, j=1,\ldots,k_0}$ is a maximal partition on R for $m \geq 1$. Take the terminal regular b-group G_{φ_m} so that $\mathcal{C}_{\varphi_m} = \mathcal{C}_m$ (cf.[1, Theorem 6]). We may suppose that $\Phi := \{\varphi_m\}_{m=1}^{\infty}$ converges to some $\varphi_0 \in \partial T(G)$. By definition, Φ and φ_0 satisfy (a) and (b) in this Theorem.

We prove that Φ satisfies (c). Let π be the projection from Σ to R and \tilde{P}_1 a component of $\pi^{-1}(P_1)$. We may assume that $\infty \in \tilde{P}_1$. Let H_1 be the stabilizer subgroup of \tilde{P}_1 in G and $G_m := \chi_{\varphi_m}(H_1)$ for $m \ge 0$. Then for $m \ge 1$, G_m is a covering group of P_1 in G_{φ_m} and is a terminal regular b-group (cf.[11]).

Let $S_m = \Delta_{G_m}/G_m$ and π_m the projection from Δ_{G_m} to S_m . Then there exists the injective holomorphic mapping h_n from P_1 to S_m such that $h_m \circ \pi |_{\bar{P}_1} = \pi_m \circ W_{\varphi_m} |_{\bar{P}_1}$. By definition, h_n is homotopic to a homeomorphism from P_1 to S_m (cf.[14]). Hence, by Lemma 7, there exist $K_0 = K_0(K_1, Q, p, n) > 0$, and the K_0 -q.c.mapping g_m from R_1 to S_m so that $g_m \circ i$ is homotopic to $h_m \circ (h_0 |_{P_1})^{-1}$.

Fix the lift \tilde{h}_0 of $i \circ h_0 |_{P_1}$ from \tilde{P}_1 into Σ . \tilde{h}_0 defines the isomorphism ξ from H_1 to , 1 by $\xi(h) \circ \tilde{h}_0 = \tilde{h}_0 \circ h$ for $h \in H_1$. By definition, h_m induces the isomorphism $\chi_{\varphi_m} |_{H_1}$. Since for $m \ge 1$, $g_m \circ i \circ h_0 |_{P_1}$ is homotopic to h_m , there exists the lift \tilde{g}_m of g_m from Σ onto Δ_{G_m} so that the isomorphism $\tilde{\eta}_m$ from , 1 to G_m defined by $\tilde{\eta}_m(\gamma) = \tilde{g}_m \gamma \tilde{g}_m^{-1}$ satisfies that $\tilde{\eta}_m \circ \xi = \chi_{\varphi_m} |_{H_1}$.

Let $w_m = \tilde{g}_m \circ W_{\psi_m}^{-1}$. Then w_m is a K_0 -q.c.mapping from Δ_{ψ_m} onto Δ_{G_m} and defines the isomorphism η_m from G_{ψ_m} to G_m by $\eta_m(g) = w_m g w_m^{-1}$. Then, η_m satisfies that $\eta_m = \chi_{\varphi_m} \mid_{H_1} \circ (\chi_{\psi_m} \circ \xi)^{-1}$. Since $g_m \circ i$ is homotopic to h_m , η_m is type preserving. Since G_{ψ_m} and G_m are terminal regular, by the rigidity of triangle groups, w_m can be extended to the K_0 -q.c.mapping on $\hat{\mathbb{C}}$ conpatible with G_{ψ_m} . This extension is denoted by the same symbol w_m for short.

To prove (c) in Theorem 3, it suffices to show that the family $\{w_m\}_{m=1}^{\infty}$ contains a subsequece which converges to a K_0 -q.c.mapping w_0 on $\hat{\mathbb{C}}$. Indeed, since $w_m G_{\psi_m} w_m^{-1} = \eta_m (G_{\psi_m}) = G_m$ for $m \geq 1$, $w_0 G_{\psi_0} w_0^{-1} = G_0$.

Take primitive hyperbolic $g_1, g_2 \in H_1$ so that g_1 is not conjugate to g_2 in H_1 and that $\alpha_{i,0} := \chi_{\varphi_0}(g_i)$ and $\beta_{i,0} := \chi_{\psi_0} \circ \xi(g_i)$ are loxodromic. Let $\alpha_{i,m} = \chi_{\varphi_m}(g_i)$ and $\beta_{i,m} := \chi_{\psi_m} \circ \xi(g_i)$. Then there exists $N_1 > 0$ such that for $m \ge N_1, \alpha_{i,m}$ and $\beta_{i,m}$ are loxodromic. For $m \ge N_1$, let $\{a_{2i-1,m}, a_{2i,m}\}$ and $\{b_{2i-1,m}, b_{2i,m}\}$ be the set of the fixed points of $\alpha_{i,m}$ and $\beta_{i,m}$ respectively. By discreteness, the cardinality of $\{a_{j,m}\}_{i=1}^4$ and $\{b_{i,m}\}_{i=1}^4$ are equal to 4 for $m \ge N_1$ or m = 0. Since $\alpha_{i,m} \to \alpha_{i,0}$ and $\beta_{i,m} \to \beta_{i,0}$, we may suppose that there exist $N_0 \ge N_1$ and d > 0such that $k(a_{j,m}, a_{j,0}), \ k(b_{j,m}, b_{j,0}) < d$ for $j = 1, \ldots, 4$ and $m \ge N_0$ and that $k(a_{i,0}, a_{j,0}), \ k(b_{i,0}, b_{j,0}) \le 4d$ for $i \ne j$, where k(-, -) is the spherical distance on $\hat{\mathbb{C}}$. Let $B_i = \{z \in \hat{\mathbb{C}} \mid k(z, a_{i,0}) \le d\}$. Since $w_m(\{a_{i,m}\}_{i=1}^4) = \{b_{i,m}\}_{i=1}^4$, by applying an argument similar to that of Theorem 4.2 in [13, p.70] for domains $\{\hat{\mathbb{C}} \setminus B_i \cup B_j\}_{i \ne j}$, there exists a subsequence $\{w_{m_j}\}_{j=1}^\infty$ and a K_0 -q.c.mapping w_0 so that w_{m_i} converges uniformly to w_0 .

It is easy to observe that if each F_i is a totally degenerate group without A.P.T.s, then $\{\varphi_m\}_{m=1}^{\infty}$ satisfies (d).

References

 W. ABIKOFF, On the boundaries of Teichmüller spaces and Kleinian groups III, Acta Math. 134 (1975), p. 211-236.

- W. ABIKOFF, The real analytic theory of Teichmüller space, Lecture Notes in Math. 820, Springer-Verlag (1980).
- [3] L.V. AHLFORS, Conformal invariant, Topics in Geometric function theory, McGrow-Hill, (1973).
- [4] A.F. BEARDON, The geometry fo discreate groups, Graduate Texts in Mathematics 91, Springer-Verlag, NewYork, (1983).
- [5] L. BERS, On boundaries of Teichmüller spaces and on Kleinian groups: I, Ann. of Math., Vol 79 (1970), p.570-600.
- [6] L. BERS, Nielsen extensions of Riemann surface, Ann. Acad. Aci. Fenn. Vol 2 (1976), p.17-22.
- [7] L. BERS, Finite dimensional Teichmüller spaces and generalizations, Bull. A.M.S. (New Series) 5 (1981), p.131-172.
- [8] P. BUSER, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics Vol 106 (1992), Birkhäuser.
- [9] Y. IMAYOSHI AND M. TANIGUCHI, An introduction to Teichmüller spaces, Springer-Verlag (1991).
- [10] S. P. KERCHOFF, The Nielsen realization problem, Ann. of Math. 117 (1983) 235-265.
- [11] I. KRA, Horocyclic coordinate for Riemann surfaces and Moduli spaces I: Teichmüller and Riemann spaces of Kleinian groups, Jour. of Amer. Math. Soc. Vol 3 (1990), p.499-578.
- [12] O. LEHTO, Univalent functions and Teichmüller spaces, Springer-Verlag, (1986).
- [13] O. LEHTO AND K. I. VIRTARNEN, Quasiconformal mappings in the plane, 2nd Ed., Springer-Verlag, Berlin and New York (1973).
- [14] B. MASKIT, On boundaries of Teichmüller spaces and on Kleinian groups: II, Ann. of Math., Vol 91 (1970), p.607-639.
- [15] B. MASKIT, Decomposition of certain Kleinian groups, Acta. Math. 130 (1973), p.243-263.
 [16] B. MASKIT, On the classification of Kleinian groups: I-Koebe groups, Acta. Math. 135
- (1975), p.249-270.[17] B. MASKIT, Kleinian groups, Springer-Verlag, Berlin and NewYork (1987).
- [18] K. MATSUZAKI AND M. TANIGUCHI, The theory of Kleinian groups, preprint.
- [19] C. T. MCMULLEN, Cusps are dence, Ann. of Math., Vol 133 (1991), p.217-247.
- [20] T. NAKANISHI AND M. NÄÄTÄNEN, Parametrization of Teichmüller space by Length parameters, accepted for publication in Analysis and Topology (C.Andreian-Cazacu, O. Lehto and Th. M. Rassias, eds.) WorldScientific, Singapore.
- [21] CH. POMMERENKE, Boundary behaviour of conformal maps, Springer-Verlag (1991).
- [22] H.SHIGA AND H.TANIGAWA, Grunsky's inequality and its applications to Teichmüller spaces, Kodai. Math. J., Vol 16 (1993), 361-378.
- [23] H. YAMAMOTO, Inner radii of Teichmüller spaces of finitely generated Fuchsian groups, Kodai. Math. J., Vol 14 (1991), 350-357.

DEPARTMENT OF MATHEMATICS, OSAKA CITY UNIVERSITY, OSAKA 558-0022, JAPAN *E-mail address*: miyaji@sci.osaka-cu.ac.jp