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Abstract. This paper gives geometric and analytic properties of the horo-
cyclic coordinate (named by Irwin Kra) for the Teichm�uller space of once
punctured tori.

Introduction The horocyclic coordinate for the Teichm�uller space T1;1 of once
punctured tori is one of holomorphic realizations of T1;1, more precisely, the Maskit
slice of once punctured torus groups, in the complex plane C . Classically, it is
known that the Teichm�uller space (of Riemann surfaces) is contractible. This was
�rst proved by O.Teichm�uller in the case of compact Riemann surfaces (cf. [1],
[6] and [10] etc.). Especially, the image M of T1;1 for the horocyclic coordinate is
simply connected. Thus, the topological property of M is well-known. Recently,
Y.Minsky gives one of geometric properties ofM. He showed in his paper [12] that

M is a Jordan domain in the Riemann sphere Ĉ . One of our aims of this paper
is to prove a geometric property of M which is di�erent from that of Minsky's as
follows.

Theorem 1. The image of the horocyclic coordinate for the Teichm�uller space
of once punctured tori is not a quasi-disk.

This is proved in Section 2.5. To prove Theorem 1, we use a Minsky's theorem,
called the \Pivot Theorem" (cf. Section 2.3 below). This result is essentially
suggested by D.Wright (cf. [16, Section 5]). In this paper, Theorem 1 is showed by
the study of the geometry near cusps in @M other than D.Wright's observations
(cf. Theorem 2).

This paper is organized as follows: In Section 1, we recall the de�nition of the
horocyclic coordinate for the Teichm�uller space of once punctured tori after L.Keen
and C.Series [2], and de�ne some notations used in this paper. In Section 2, we
treat the main theorem of this paper. Section 3 deals with results related to the
cusp opening for the maximally parabolic groups in the boundary of Maskit slice.
In Section 4 we give an analytic property of M. Namely, we study the behavior at
boundary of M of elements of the group of automorphism of M.
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1. Preliminaries

1.1. In this subsection, we recall the de�nition of the horocyclic coordinate
for the Teichm�uller space of once punctured tori in accordance with L.Keen and
C.Series [2, Section 2] (see also [5, Section 6.3] and [16]).

For � 2 C , let S; T� 2 SL2(C ) be

S =

�
1 2
0 1

�
T� = �{

�
� 1
1 0

�
:

Let G� = hS; T�i. We shall often identify G� with the subgroup of the group
of M�obius transformations. We de�ne the domain M in C as follows: � 2 C is
contained in M if and only if Im� > 0, and G� is a terminal regular b-group of
type (1,1). Namely the following hold:

1. G� is a free group on two generators.
2. The connected components of the region of discontinuity of G� are of two

kinds:
(a) A simply connected G�-invariant component of 
� for which the orbit

space S� = 
�=G� is topologically conjugate to a once punctured torus.
(b) Non-invariant components 
i;�, i � 1, that are conjugate to one another

under G� and for which each orbit space 
i;�=stab(Gi;�) is conformally
equivalent to the thrice punctured sphere.

Notice that M coincides with the D.Wright's picture (cf. [16], [2, p.721] and [8,

p.180]). Then M is a simply connected Jordan domain in Ĉ (cf. [12, Section 12])
and contains f{ t 2 C j t > 2g. For � 2M, G� is obtained by applying the Maskit's
second combination theorem for T� and the level 2 principal congruence subgroup
of PSL(2;Z) (cf. [5, Section 6]).

Next, we recall the holomorphic bijection between M and T1;1. On S�, � 2 M,
let �� and �� be oriented simple closed Poincar�e geodesics corresponding to S and
T�, respectively (it is known that S is an accidental parabolic transformation of
G�, see [2, p.723]). The pair (��; ��) determines the marking on S�, and hence
(S�; (��; ��)) determines a point of T1;1. This correspondence is a holomorphic
bijection (cf. [4, p.233] and [2, p.722]). We let � = S4{, � = �4{ and � = �4{.
The fundamental group �1(�) of � with the suitable base point is generated by �
and �. For � 2 C , we de�ne the homomorphism �� from �1(�) onto G� which

sends � and � to S and T�, respectively. For � 2 M n f1g, �� is an isomorphism
and G� is a Kleinian group (cf. [7, Theorem 2.21]). For � 2 M, �� is induced
from a quasi-conformal mapping from � to S� which maps � and � to �� and ��,
respectively (cf. [2, Section 2.1]).

1.2. In this subsection, we give an inductive procedure for constructing the
element Wp=q;� 2 G� corresponding to the p=q-homotopy class.

We recall the formation of rationals by Faray sequences. A pair of rationals
(p=q; r=s) are called neighbors if ps � rq = �1. All rationals are obtained in a
unique way by repeated application of the process (p=q; r=s) 7! (p + r)=(q + s)
to Faray neighbors starting with integer neighbors (n=1; (n + 1)=1). Note that if
p=q < r=s and if (p=q; r=s) are neighbors then p=q < (p+r)=(q+s) < r=s and both
pairs (p=q; (p+ r)=(q + s)), ((p+ r)=(q + s); r=s) are again neighbors.
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The element (p=q) 2 �1(�) is de�ned inductively as follows: if n 2 Z, then
(n=1) = ��n� and if (p=q; r=s) are neighbors with p=q < r=s, then

((p+ r)=(q + s)) = (r=s)(p=q):

Then we can see that [(p=q)] = �p[�] + q[�], where for ! 2 �1(�), [!] is the
homology class of a loop in ! (cf. [2, Section 2.4], see also [12, Section 2]). We let
for � 2 C , Wp=q;� = ��((p=q)) and denote by (p=q; �) the simple closed geodesic
on S� associated with Wp=q;�. The trace tr(Wp=q;�) of Wp=q;� is a polynomial of
the form (cf. [2, Proposition 3.1]):

tr(Wp=q;�) = (�{)q(�q � 2p�q�1 + bq�2�
q�2 + � � �+ b0); bi 2 Z:

For example, tr(Wn=1;�) = �{(�� 2n) for n 2 Z.

2. The main theorem

2.1. For p; q 2 Z with (p; q) = 1 and q 6= 0, we denote by �(p=q) the end point
of the p=q-pleating ray in @Mn f1g. For example, �(n=1) = 2n + 2{ for n 2 Z.
We know that tr(Wp=q;�(p=q))

2 = 4 and f�(p=q)gp=q2Q is dense in @Mn f1g (for
more details, [2, Section 5]). By Theorem 5.1 in [2], we have the following.

Lemma 1. Unless p=q = r=s, �(p=q) 6= �(r=s) and Wp=q;�(r=s) is not parabolic.

2.2. For p; q 2 Z with (p; q) = 1 and q 6= 0, let fp=q(�) = tr(Wp=q;�)
2 � 4. To

prove Theorem 1, we shall show the following lemma.

Lemma 2. There exist a simply connected Jordan domain fM in Ĉ and a holo-

morphic function �p;q on an open set which contains fM[ f0g such that

(a) 0 2 @ fM, �p;q(0) = 0, and Ref�p;q(t)g > 0 for t 2 fM.
(b) If dfp=q=d�(�(p=q)) 6= 0 then d�p;q=dt(0) 6= 0.

(c) Let �1(t) = �(p=q) + t2 and �2(�) = �2. Then �1 jfM is a biholomorphic

mapping from fM to M, and makes the following diagram commutative:

fM 2 sinh(
�p;q(�)

2 )���������! C

�1

??y ??y�2
M �����!

fp=q(�)
C

Proof. Since the function z 7! sinh2(z) (= �2(sinh(z))) is an even function on C

and fp=q(�(p=q)) = 0, there exist a neighborhood U1 of �(p=q) and U2 of 0 2 C

and a holomorphic function �0 on U2 such that �0(0) = 0 and that fp=q(�1(t)) =
�2(2 sinh(�0(t)=2)) for t 2 U2. Since M is simply connected, and �(p=q) 2 @M,

there exists a simply connected domain fM � C such that �1 jfM is a conformal

mapping on fM onto M. Clearly 0 2 @ fM and �1 is extended to a homeomorphism

from fM onto M with �1(0) = �(p=q) and �1(1) =1.
By virtue of Lemma 1, for � 2M n f�(p=q);1g, Wp=q;� is either loxodromic or

hyperbolic. Hence for t1 2 fMn f0;1g, there exist a neighborhood Ut1 of t1 and
a holomorphic function �t1 on Ut1 such that fp=q(�1(t)) = �2(2 sinh(�t1 (t)=2)) for

t 2 Ut1 . Since M is a Jordan domain, so fM is. By analytic continuation, we �nd

a holomorphic function �p;q on an open set in C which contains fM[f0g such that
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the diagram above commutes. Since Ref�p;q(t)g 6= 0 on fM, it can be taken �p;q so

that Ref�p;q(t)g > 0 on fM, and hence assertions (a) and (c) are obtained. Finally,
(c) implies fd�p;q=dt(0)g2 = dfp=q=d�(�(p=q)). Thus, (b) also holds. �

Remark. In general, for a holomorphic function ' from a domain in C to
SL2(C ), if a value of ' for some point is parabolic, (tr('))2 can not be of the form

4 cosh2(�(t)=2) by using some holomorphic function � on the domain. For instance,

'(t) :=

�
cosh(

p
t)

p
t sinh(

p
t)

sinh(
p
t)=
p
t cosh(

p
t)

�
; for jtj < 1:

2.3. In this subsection, we recall Minsky's theorem, called the \Pivot theorem"
(cf. [12, Theorem 4.1]). In this paper, we use the special case of his theorem
stated as follows: Let p; q 2 Z be as in the previous subsection. Take (r; s) 2 Z

such that a pair (�p[�] + q[�]; r[�] + s[�]) is a positively oriented basis of H1(�).
Then there exist �+(�) 2 H and m;n 2 Z with (m;n) = 1 and n 6= 0 such that
[�] = m(�p[�] + q[�]) + n(r[�] + s[�]) and that the following property holds: Let
� = hz 7! z + 1; z 7! z + �+(�)i, D = C n �((1 + �+(�))=2), and � be a projection
from D onto D=�. There exists the conformal mapping h from D=� to S� such
that h(�([0; 1])) and h(�([0; �+(�)])) is freely homotopic to (p=q; �) and (�r=s; �)
respectively.

It can be observed that �+(�) + (m=n) is not depend on the choice of (r; s)
(for more details, see [12, Section 4]). Under notation above, Minsky proved the
following.

Theorem (Pivot Theorem) There exist universal constants �0; C1 > 0 such that
if 0 < Re(�p=q(�

�1
1 (�))) < �0 and if jIm(�p=q(��11 (�)))j < �, then

dH

 
2�{

�p=q(�
�1
1 (�))

; �+(�) + (m=n) + {

!
< C1:

where dH (�; �) is the Poincar�e hyperbolic metric on H .

2.4. We know that �+ is a conformal mapping fromM onto H (cf. [12, Section
2.3]). Since M is a Jordan domain, � := ��1+ can be extended continuously to H
onto M. For s 2 R, let ��(s) = �(s� (m=n) + {) and �(s) = (�1)

�1(��(s)).

Proposition 3. The following hold:

(a) �(1) = �(p=q).
(b) There exist disks B1 and B2 in C such that

(i) 0 2 @Bj and the center of Bj is contained in the real axis for j = 1; 2,
and B1 \ B2 = ;.

(ii) Let � = f2 sinh(�(�(s))=2) j s 2 Rg. Then � \ Bj = ; for j = 1; 2.
(iii) The mapping s 7! 2 sinh(�(�(s))=2) tends to 0 from both sides of C nB1 [

B2 as s! +1 and �1 (cf. Figure 1).

Proof. (a) By Lemma 1, it su�ce to show that �(1) 6=1 and that Wp=q;�(1) is
parabolic.

We �rst prove �(1) 6=1 by contradiction. Assume that �(1) =1. We know
that for � 2 M with Im� > 2, S� contains the annulus A� with the modulus
(Im� � 2)=2 such that the central curve of A� is freely homotopic to ��. (cf. [5,
Section 6.3 and Figure 8(with r = 1)]). Since q 6= 0, the geometric intersection
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Figure 1

number between �� and (p=q; �) is not zero. Hence, by the assumption, the
extremal length of (p=q;�(�)) on S�(�) tends to 1 as Im� ! +1. On the other
hand, by the de�nition of �+, the extremal length of (p=q;�(�)) on S� is equal to
1=Im�+(�(�)) = 1=Im�, which is absord.

By the argument above, ��(1) is an isomorphism. By Corollary A.6 in [11,

p.216], tr(Wp=q;�(�))
2 tends to 4 as Im� !1. Therefore, Wp=q;�(1) is parabolic.

(b) Since �(1) = �(p=q), �(s) ! 0 as s ! �1. Since �p=q(0) = 0, there
exists s0 > 0 such that for jsj > s0, 0 < Re�(�(s)) < �0 and jIm�p=q(�(s))j < �.
Since �+(�1(�(s))) = s�m=n+ {, by virtue of the Pivot theorem,

dH

�
2�{

�p=q(�(s))
; s+ 2{

�
< C1:(1)

for jsj > s0. Hence there exists C > 0 such that

1

C
< Im

�
2�{

�(�(s))

�
< C(2)

whenever jsj > s0. Since Re�p=q(t) > 0 for t 2 fM, there exists C 0 > 0 such
that j2 sinh(�p=2(�(s))=2)j > C 0 whenever jsj � s0. Since the map z 7! sinh(z) is
conformal at z = 0, by the equation (2), we obtain the disks Bj , j = 1; 2 which
satisfy (i) and (ii). By construction, for j = 1; 2, the center of Bj is contained in
the real axis. By (1), Re(2�{=�p=q(�(s))) ! +1 (resp. �1) as s ! +1 (resp.
�1). This implies the assertion (iii). �

2.5. In this subsection, we prove Theorem 1. Let up=q = dfp=q=d�(�(p=q)).
First, we show the following lemma.

Lemma 4. Let p and q be as in the previous subsection. If up=q 6= 0, then there
exist a neighborhood U of 0 and disks Bj , j = 1; 2 such that

(a) Bj � U , 0 2 @Bj for j = 1; 2 and B1 \ B2 = ;.
(b) B1 � fM and B2 \ (fM\ U) = ;.
(c) For j = 1; 2, the center of Bj lies on `(p=q) := ft(up=q)1=2 j t 2 Rg.

Proof. Let U be a neighborhood of 0 such that jIm�p=q(t)j < � for t 2 U . Let

h(t) = 2 sinh(�p=q(t)=2). Then h(U \ fM) � fRe� > 0g and h(0) = 0. Since
up=q 6= 0, by (b) of Lemma 2, we may suppose that h is univalent on U . Hence

there exists a disk B2 in U so that 0 2 @B2 and that B2 \ (fM\ U) = ;. Since
h0(0)2 = (�0p=q(0))

2 = up=q, the center of B2 lies on `(p=q).



6 HIDEKI MIYACHI

By virtue of (i) and (ii) in Proposition 3, there exist disks fB0jgj=1;2 such that

0 2 @B0j and that these are disjoint from the curve �̂0 := f�(s) j s 2 Rg. Since �

is injective and �(s) ! 0 as jsj ! 1, �̂ := �̂0 [ f0g is a Jordan curve in C . Since

�̂ � fM[f0g and h is univalent on U , by (iii) of Proposition 3, either B01 and B02 is

contained in fM. Hence there exists a disk B1 such that 0 2 @B1 and B1 � fM\U .
By the de�nition of B2, B1 \B2 = ; and B1 is tangent to B2 at origin. Hence the
center of B1 lies on `(p=q). By the above, we conclude the assertion. �

Notice that un=1 = �4{ 6= 0. Hence, to prove Theorem 1, if su�ce to show the
following.

Theorem 2. If up=q 6= 0, then �(p=q) is an inward-pointing cusp of M.

Here, in this paper, we say that for a domain E � C , e0 2 @E is an inward-
pointing cusp at e0 2 @E if there exists a disk B � C such that 0 2 @B and that
e0 + t2 2 E for t 2 B (cf. [13, p.51] and Figure 2).

Figure 2. An inward-pointing cusp

Proof. By Lemma 4, there exists � 2 R so that B1 = fjt��(up=q)1=2j < j�jjup=qj1=2g
and that B1 � fM. Hence M contains

�1(B1) = f�(p=q) + t2 j jt� �(up=q)
1=2j < j�jjup=q j1=2g

= f�(p=q) + up=qt
2 j jt� �j < j�jg: �

Remark. 1. The idea of the proof of Theorem 2 can be applied to the study
of the image of the Bers embedding of T1;1.

2. By Corollary 1 in [5, p.558], we can immediately observe that the image of
the horocyclic coordinate for the Teichm�uller space of four times punctured spheres
is also not a quasi-disk (for the de�nition, see [5, Section 6.1]).

3. The cusp opening

In this section, we study the behavior of the cusp opening for the maximally
parabolic groups in the boundary of Maskit slice. (for the de�nition, see [3, De�-
nition 3.2]). For p; q 2 Z such that (p; q) = 1, q 6= 0, let vp=q := �up=q=jup=qj. For
example, vn=1 = �{ for n 2 Z. Recall that G�(p=q) is a maximal parabolic group
with accidental parabolic transformations Wp=q;�(p=q) and S.

The following is an immediate consequence of the proof of Theorem 2.

Theorem 3. Let p; q 2 Z as above. For v 2 fv 2 C j jvj = 1g n fvp=qg, there
exists d0 = d0(p=q; v) > 0 such that �(p=q) + dv 2 M if 0 < d < d0, that is, for
0 < d < d0, G�(p=q)+dv is a terminal regular b-group with an accidental parabolic
transformation S.

Remark. The author makes the �gures in Figure 3 by using the computer
program \OPTi 3.0" produced by Professor Masaaki Wada [15].
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Figure 3. The cusp opening

4. The boudary behavior of the automorphism of M
In this section, we study the behavior at boundary ofM of elements of the group

of automorphism of M.

Lemma 5. Let D be a simply connected Jordan domain so that 0 2 @D and
that fw 2 C j jw � {rj < rg � D and D \ fw 2 C j jw + {rj < rg = ; for some
r > 0. Let h be a conformal mapping from D to H so that h(0) = 0. Then for any
0 < � < �=2, the image of S = fw 2 C j j arg(w={)j < �; jwj < r cos�g under h is
contained in some Stolz domain in H whose vertex is at z = 0.

Proof. Let g = h�1. By Theorem IX.9 in [14, p.366], there exists A > 0 such that
g(z) = Az+o(jzj) where z tends to zero inside of any �xed Stolz domain in H whose
vertex is at z = 0. Hence there exists � < r cos�=2A so that jg({y)�{Ayj < A sin�y,
if 0 < y < �. Especially, g({y) 2 S for 0 < y < �. Since fw 2 C j jw� {rj < rg � D,
there exists C > 0 such that S is contained in S00 := [y>0fw 2 D j dD(g({y); w) <
Cg where dD is the hyperbolic distance of D. Let Ŝ = [y>0fz 2 H j dH ({y; z) < Cg.
Then Ŝ is a Stolz domain whose vertex is at z = 0 and satis�es h(S) � Ŝ. In fact,
let w 2 S. Since S � S00, there exists y > 0 so that dD(g({y); w) < C. Hence

dH ({y; h(w)) = dD(g({y); w) < C. This implies that h(w) 2 Ŝ. �

For p=q 2 Q with up=q 6= 0, � > 0 and � > 0, let

Sp=q(�; �) = f� 2 C j j arg((�� �(p=q))=up=q)j < �; 0 < j�� �(p=q)j < �g:
Notice that by Theorem 3, for � < � and a su�ciently small �, Sp=q(�; �) �M.

Theorem 4. Let p=q and r=s 2 Q so that up=q; ur=s 6= 0. Then every automor-
phism � of M with �(�(p=q)) = �(r=s) is conformal at � = �(p=q) in the following
sense: There exists A > 0 such that

�(�) = �(r=s) +A

�
ur=s

up=q

�
(�� �(p=q)) + o(j�� �(p=q)j);

where �! �(p=q) inside of Sp=q(�; �) for a su�ciently small � and a �xed � < �.

Proof. By Lemma 2, for x = p=q; r=s, there exists a simply connected Jordan

domain fMx such that 0 2 @ fMx and that �x(t) := �(x)+t2 is a conformal mapping

from fMx to M. Let e� = ��1r=s � � � �p=q . Then for x = p=q and r=s, there exists a

conformal mapping hx from H to fMx such that hx(0) = 0 and that hr=s �h�1p=q = e� .
Take a neighborhood Ux of 0 and disks Bj;x, j = 1; 2 which satisfy (a), (b) and
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(c) in Lemma 4 for x = p=q and r=s. Fix the branch of (ux)
1=2 so that the center

of B1;x is of the form rx(ux)
1=2 for some rx > 0. Then, by Theorem IX.9 in [14,

p.366], there exists �x > 0 such that

hx(z) = (�x{=ux)z + o(jzj);(3)

where z tends to 0 inside of any �xed Stolz domain whose vertex is at z = 0.

Let 0 < � < � and 0 < � < r2p=q jup=q j cos2(�=2). Then fMp=q contains S
0 = ft 2

C j j arg(t=(ux)1=2)j < �=2; jwj < �1=2g. By Lemma 5, h�1x (S0) is contained in some
Stolz domain in H whose vertex is at z = 0. Hence, by (3),e� (t) = A1=2(ur=s

1=2=up=q
1=2)t+ o(jtj);

where t ! 0 inside of S0 and A = (�r=s=�p=q)
2. Since �r=s � e� = � � �p=q and

�p=q(S
0) = Sp=q(�; �), we conclude the assertion. �
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