
NORM ESTIMATES AND UNIVALENCE CRITERIA FOR
MEROMORPHIC FUNCTIONS

S. PONNUSAMY AND TOSHIYUKI SUGAWA

Abstract. Norm estimates of the pre-Schwarzian derivatives are given for meromorphic
functions in the outside of the unit circle and used to deduce several univalence criteria.

1. Introduction

Let A denote the set of analytic functions f in the unit disk D = {z ∈ C : |z| < 1}
normalized so that f(0) = 0 and f ′(0) = 1. The set S of univalent functions in A has
been intensively studied by many authors. It is well recognized that the set Σ of univalent
meromorphic functions F in the domain ∆ = {ζ : |ζ| > 1} of the form

(1.1) F (ζ) = ζ +
∞∑

n=0

bnζ
−n

plays an indispensable role in the study of S .
In paralell with the analytic case, we consider the set M of meromorphic functions in

∆ with the expansion (1.1) around ζ = ∞. For some technical reason, we also consider
the set Mn of functions F in Σ of the form

F (ζ) = ζ +
bn
ζn

+
bn+1

ζn+1
+ · · ·

for each nonnegative integer n. Note that M0 = M .
Practically, it is an important problem to determine univalence of a given function

in A or in M . The best known conditions for univalence are probably those involving
pre-Schwarzian or Schwarzian derivatives, which are defined by

Tf =
f ′′

f ′
and Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.
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We define quantities for functions f ∈ A and F ∈ M by

B(f) = sup
|z|<1

(1− |z|2)
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ,
B∗(F ) = sup

|ζ|>1

(|ζ|2 − 1)

∣∣∣∣ζF ′′(ζ)

F ′(ζ)

∣∣∣∣ ,
N(f) = sup

|z|<1

(1− |z|2)2 |Sf (z)| ,

N∗(F ) = sup
|ζ|>1

(|ζ|2 − 1)2 |SF (ζ)| .

Note that these quantities may take ∞ as their values. For example, if F has a pole at a
finite point, then B∗(F ) = ∞.

If f ∈ A and F ∈ M have the relation f(z) = 1/F (1/z), then we can easily see that
the relation

(1− |z|2)2Sf (z) = (|ζ|2 − 1)2SF (ζ)

holds for z = 1/ζ. In particular, we have N(f) = N∗(F ).
Nehari [16] proved the following univalence criteria except for the quasiconformal ex-

tension property, which is due to Ahlfors and Weill [1].

Theorem A. Every f ∈ S satisfies N(f) ≤ 6. Conversely, if f ∈ A satisfies N(f) ≤
2 then f must be univalent. Moreover, if N(f) ≤ 2k < 2, then f extends to a k-
quasiconformal mapping of the extended plane. The constants 6 and 2 are best possible.
The same is true for meromorphic F.

Here and hereafter, a quasiconformal mapping g is called k-quasiconformal if its Bel-
trami coefficient µ = gz̄/gz satisfies ‖µ‖∞ ≤ k.

Though zf ′(z)/f(z) = ζF ′(ζ)/F (ζ), there is no such a simple relation between zf ′′(z)/f ′(z)
and ζF ′′(ζ)/F ′(ζ), and thus, between B(f) and B∗(F ) for f(z) = 1/F (ζ), ζ = 1/z. In-
deed, we have the formula

(1.2) F ′(ζ) =

(
z

f(z)

)2

f ′(z),

which leads to

−ζF
′′(ζ)

F ′(ζ)
= 2

(
1− zf ′(z)

f(z)

)
+
zf ′′(z)

f ′(z)
.

Nevertheless, it is rather surprising that formally the same conclusion can be deduced for
f and F. Compare Theorem B with Theorem C.

Theorem B. Every f ∈ S satisfies B(f) ≤ 6. Conversely, if f ∈ A satisfies B(f) ≤ 1
then f ∈ S . Moreover, if B(f) ≤ k < 1, then f extends to a k-quasiconformal mapping
of the extended plane. The constants 6 and 1 are best possible.

The sufficiency of univalence and quasiconformal extendibility is due to Becker [7]. The
sharpness of the constant 1 is due to Becker and Pommerenke [9]. The sharp inequality
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B(f) ≤ 6 follows from a standard inequality appearing in coefficient estimation (see, e.g.,
[10, Theorem 2.4]).

Theorem C. Every F ∈ Σ satisfies B∗(F ) ≤ 6. Conversely, if F ∈ M satisfies B∗(F ) ≤ 1
then F ∈ Σ. Moreover, if B∗(F ) ≤ k < 1, then F extends to a k-quasiconformal mapping
of the extended plane. The constants 6 and 1 are best possible.

The sufficiency of univalence and quasiconformal extendibility is due to Becker [8]. The
sharpness of the constant 1 is again due to Becker and Pommerenke [9]. On the other
hand, the estimate B∗(F ) ≤ 6 lies deeper. Avhadiev [4] first showed the sharp inequality
B∗(F ) ≤ 6 by appealing to Goluzin’s inequality (see [11, p. 139]).

Note that many authors use a different norm for the pre-Schwarzian derivative of f ∈ A ,
namely, ‖Tf‖ = sup|z|<1(1 − |z|2)|Tf (z)|, see [14], [13], [12] and [17]. By definition, we
observe B(f) ≤ ‖Tf‖.

Recall that a plane domain Ω ⊂ C is called hyperbolic if ∂Ω contains at least two
points. The uniformization theorem ensures existence of the (complete) hyperbolic metric
ρΩ(w)|dw| on Ω with constant Gaussian curvature −4. Let Ω be a hyperbolic plane domain
such that 1 ∈ Ω but 0 /∈ Ω and set

Π(Ω) = {F ∈ M : F ′(ζ) ∈ Ω for all ζ ∈ ∆}.

Set also Πn(Ω) = Π(Ω) ∩Mn for n = 0, 1, 2, . . . .
In [13], the quantity

W (Ω) = sup
w∈Ω

1

|w|ρΩ(w)
,

is studied and called the circular width of Ω. Note that the circular width can also be
expressed by W (Ω) = supz∈D(1 − |z|2)|p′(z)/p(z)|, where p : D → Ω is any analytic
universal covering projection of D onto Ω. (We do not demand the condition p(0) = 1.)

One of our main results in the present paper is an estimate of B∗(F ) for F ∈ Πn(Ω).
The proof of the following theorem will be given in Section 2.

Theorem 1. Let Ω be a hyperbolic domain such that 1 ∈ Ω but 0 /∈ Ω. For every F ∈
Πn(Ω), n ≥ 0, the inequality

B∗(F ) ≤ CnW (Ω)

holds, where Cn is the constant given by C0 = 2 and

(1.3) Cn = sup
0<r<1

(n+ 1)(1− r2)rn−1

1− r2n+2
, n ≥ 1.

As we shall show later (see Proposition 5), we have C1 = 2 and 1 < Cn < (n + 1)/n
for n ≥ 2. We note that an analytic counterpart of this theorem is known and it is much
simpler to prove (see [14, Theorem 4.1]);

B(f) ≤ ‖Tf‖ ≤ W (Ω)

holds for f ∈ A with f ′(D) ⊂ Ω.
The univalence criterion in the following is due to Aksent’ev [2] (see also [6, p. 11]).

Later, Krzyż [15] gave quasiconformal extensions.
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Theorem D (Aksent’ev, Krzyż). Let 0 ≤ k ≤ 1. If F ∈ M satisfies the inequality

(1.4) |F ′(ζ)− 1| ≤ k, |ζ| > 1,

then F is univalent. Furtheremore, if k < 1, then F extends to a k-quasiconformal
mapping of the extended plane. The radii 1 and k are best possible.

The above criterion implies univalence of F ∈ M when the range of F ′ is contained
in the disk |w − 1| < 1. We remind the reader of the fact that the Noshiro-Warschawski
theorem asserts that the condition Re f ′ > 0 is sufficient for f ∈ A to be univalent (cf. [10,
Theorem 2.16]). However, the meromorphic counterpart does not hold. Moreover, the
range of F ′ cannot be enlarged to any disk of the form |w − r| < r, r > 1, to ensure
univalence of F (Aksent’ev and Avhadiev [3], see also §4).

With the aid of Theorem 1, we have several results similar to Theorerm D. The following
are a couple of examples. Note that the univalence criteria in Theorems 2 and 3 for the
case n = 0 were first given by Avhadiev and Aksent’ev [5].

Let xm be the unique solution to the equation

2F1(1,− 1
m

; 1− 1
m

;x) =
1

2
in the interval 0 < x < 1 for each integer m ≥ 2 (see Section 4 for details). Put also
x1 = x2.

Theorem 2. Let n ≥ 0 and 0 ≤ k ≤ 1. Suppose that a function F ∈ Mn satisfies the
condition

| argF ′(ζ)| ≤ kπ

4Cn

, |ζ| > 1,

then F must be univalent. Furtheremore, if k < 1, then F extends to a k-quasiconformal
mapping of the extended plane. As for univalence, the constant π/(4Cn) cannot be replaced
by any larger number than (4/π) arctan xn+1.

Note that x1 = x2 ≈ 0.4198 and that (4/π) arctan x1 ≈ 0.506057 ≈ 1.28866(π/8).
In the following univalence criterion, F ′ is even allowed to take values with negative

real part. Let βm be the unique solution to the equation

(1.5) 2β

∫ π/4

0

(cotx)1/me2β(x−π/4)dx = 1

in 0 < β <∞ for each integer m ≥ 2 (see Example 11 in Section 4). Set β1 = β2.

Theorem 3. Let n ≥ 0 and 0 ≤ k ≤ 1. Suppose that a function F ∈ Mn satisfies the
condition

| log |F ′(ζ)|| ≤ kπ

4Cn

, |ζ| > 1,

then F must be univalent. Furtheremore, if k < 1, then F extends to a k-quasiconformal
mapping of the extended plane. As for univalence, the constant π/(4Cn) cannot be replaced
by any larger number than πβn+1/2.

A numerical computation gives πβ1/2 ≈ 0.719122 ≈ 1.83123(π/8). These results can
also be translated into those for the functions f ∈ A by using the relation (1.2). The
proofs of the above theorems and slightly more refined results will be presented in Section
5.
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2. Proof of Theorem 1

Let Ω be a plane domain with 1 ∈ Ω and 0,∞ ∈ Ĉ\Ω and let p be an analytic universal
covering map of D onto Ω with p(0) = 1. Let F ∈ Πn(Ω) be given. When n = 0, the
function F can be expressed in the form F = F0 +b0, where F0 ∈ M1 and b0 is a constant,
thus F0 ∈ Π1(Ω). Recall that C0 = C1 = 2. Therefore, we may further assume that n ≥ 1.

Let ω : D → D, ω(0) = 0, be the lift of the mapping z 7→ F ′(1/z) of D into Ω via the
covering map p : D → Ω, namely,

(2.1) F ′
(1

z

)
= p(ω(z)), |z| < 1.

Since F ∈ Mn, it can be expressed in the form

F (ζ) = ζ +
∞∑

k=n

bkζ
−k, |ζ| > 1,

we have

F ′(1/z) = 1−
∞∑

k=n

kbkz
k+1 = 1−

∞∑
k=n+1

(k − 1)bk−1z
k, |z| < 1.

In particular, ω has a zero of at least order n + 1 at the origin. This implies that the
function ϕ(z) = ω(z)/zn+1 is analytic and satisfies |ϕ(z)| ≤ 1 by the maximum modulus
principle. We now apply the Schwarz-Pick lemma to the function ϕ to get

|ϕ′(z)| ≤ 1− |ϕ(z)|2

1− |z|2
, |z| < 1,

and equivalently,

(2.2) |zω′(z)− (n+ 2)ω(z)| ≤ |z|2n+2 − |ω(z)|2

|z|n(1− |z|2)
, |z| < 1.

In particular, we obtain

(2.3) |zω′(z)| ≤ (n+ 2)|ω(z)|+ |z|2n+2 − |ω(z)|2

|z|n(1− |z|2)
, |z| < 1.

The last inequality can be expressed by

(2.4) (1− |z|2)|z|−1|ω′(z)| ≤ (1− |ω(z)|2)F (|z|, |ω(z)|), |z| < 1,

where the function F (r, s) is defined by

F (r, s) =
(n+ 1)(1− r2)rns+ r2n+2 − s2

rn+2(1− s2)
.

Since |ϕ(z)| ≤ 1, we see that |ω(z)| ≤ |z|n+1 holds. We now show the following
elementary result.

Lemma 4.

F (r, s) ≤ F (r, rn+1) =
(n+ 1)(1− r2)rn−1

1− r2n+2
, 0 ≤ s ≤ rn+1.
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Proof. We first see the inequality

∂F

∂s
(r, s) =

1 + s2

rn+2(1− s2)2

[
(n+ 1)rn(1− r2)− 2(1− r2n+2)

s

1 + s2

]
≥ 1 + s2

rn+2(1− s2)2

[
(n+ 1)rn(1− r2)− 2(1− r2n+2)

rn+1

1 + r2n+2

]
=

(1 + s2)

r2(1− s2)2(1 + r2n+2)
G(r), 0 ≤ s ≤ rn+1,

because the function s/(1 + s2) is increasing in 0 < s < 1 and s ≤ rn+1 is assumed. Here,

G(r) = (n+ 1)(1− r2)(1 + r2n+2)− 2r(1− r2n+2)

= (1− r2)

[
(n+ 1)(1 + r2n+2)− 2r

n∑
j=0

r2j

]

= (1− r2)

[
(n+ 1)(1 + r2n+2)− r

n∑
j=0

(r2j + r2n−2j)

]

= (1− r2)
n∑

j=0

[
(1 + r2n+2)− r(r2j + r2n−2j)

]
= (1− r2)

n∑
j=0

(1− r2j+1)(1− r2n+1−2j) > 0.

Therefore, we conclude that (∂F/∂s)(r, s) > 0 in 0 < s < rn+1, which implies the mono-
tonicity of the function F (r, s) in s. Thus the inequality F (r, s) ≤ F (r, rn+1) holds in
0 ≤ s ≤ rn+1. �

We now complete the proof of Theorem 1. By taking the logarithmic derivative of the
both sides of (2.1), we have the relation

−F ′′(1/z)

z2F ′(1/z)
=
p′(ω(z))

p(ω(z))
ω′(z), |z| < 1.

Letting ζ = 1/z, we thus obtain

(|ζ|2 − 1)

∣∣∣∣ζF ′′(ζ)

F ′(ζ)

∣∣∣∣ = (1− |z|2)|z|−1

∣∣∣∣p′(ω(z))

p(ω(z))

∣∣∣∣ |ω′(z)|.
Recall here that Cn is nothing but the supremum of F (r, rn+1) over 0 < r < 1. We then
make use of (2.4) and Lemma 4 to deduce the inequality

(|ζ|2 − 1)

∣∣∣∣ζF ′′(ζ)

F ′(ζ)

∣∣∣∣ ≤ (1− |ω(z)|2)
∣∣∣∣p′(ω(z))

p(ω(z))

∣∣∣∣F (|z|, |z|n+1)

≤ Cn(1− |ω(z)|2)
∣∣∣∣p′(ω(z))

p(ω(z))

∣∣∣∣
≤ CnW (Ω).

The assertion of the theorem now follows.
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Remark. The theorem is sharp if the relation ρ0 = rn+1
0 is satisfied by chance, where

r = r0 is the point where the maximum is attained in the definition of Cn and r = ρ0 is the
radius where the maximum is attained for (1− |z|2)|p′(z)/p(z)|. Let w0 be the maximum
point of (1− |z|2)|p′(z)/p(z)| with |w0| = ρ0, and set z0 = r0. Then we choose ω0 so that
ω0(z0) = w0 and equalities hold in (2.2) and (2.3) at z = z0 simultaneously (see the proof
of Dieudonné’s lemma in [10, p. 198]). Then, we actually have B∗(F ) = CnW (Ω) in this
case, where F is determined by F ′(1/z) = p(ω0(z)) in |z| < 1.

As we promised in Introduction, we give some information about the constants Cn.

Proposition 5. The constants Cn given by (1.3) satisfy the following:

C0 = C1 = 2, C2 =
3
√

6(
√

13− 1)

5 +
√

13
≈ 1.37838,(2.5)

1 < Cn <
n+ 1

n
, n = 2, 3, . . . .(2.6)

Proof. The relations in (2.5) can be checked in a straightforward way. We omit the
details. We show only (2.6). Let n ≥ 2 and set

gn(x) =
1− xn+1

x(n−1)/2(1− x)
, x ∈ (0, 1).

Then clearly, Cn = (n+ 1)/ inf0<x<1 gn(x). First note that

lim
x→1

gn(x) = n+ 1.

Therefore, we have Cn ≥ 1. In order to show strictness, we set x = 1− ε, ε > 0. Then

gn(1− ε) = (n+ 1)− n+ 1

2
ε+O(ε2), ε→ 0,

which implies that gn(x) is smaller than n+1 when x < 1 is close enough to 1. Therefore,
Cn > 1.
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We next show the reverse inequality. Since gn(x) → +∞ as x → 0+, the function gn

takes its minimum at a point in (0, 1). We now estimate gn(x) from below;

gn(x) = x(1−n)/2

n∑
j=0

xj

> x(1−n)/2

n−1∑
j=0

xj

= x(1−n)/2

n−1∑
j=0

xj + xn−1−j

2

=
n−1∑
j=0

xj−(n−1)/2 + x(n−1)/2−j

2

≥
n−1∑
j=0

1 = n.

Thus we get the inequality min0<x≤1 gn(x) > n, which in turn implies Cn < (n+1)/n. �

3. A variant of Theorem 1

We give a variant of Theorem 1 in the present section. In the following theorem, the
condition p(0) = 1 for the analytic universal covering map p of D onto Ω is required and
the involved constant might not be computed easily, but the estimate is independent of
n and better than Theorem 1 at least when n = 0.

Theorem 6. Let Ω be a plane domain with 1 ∈ Ω but 0,∞ /∈ Ω and let p be an analytic
universal covering map of the unit disk D onto Ω with p(0) = 1. Then, for every F ∈ Π(Ω)
the inequality

B∗(F ) ≤ 2 sup
|z|<1

(1− |z|)
∣∣∣∣p′(z)p(z)

∣∣∣∣
holds.

Proof. The proof proceeds basically in the same line as in the previous section. In order
to show that the constant is really independent of n for which F ∈ Πn(Ω) holds, we prove
the assertion under the additional assumption that F ∈ Πn(Ω) for a fixed n ≥ 1. We
replace the inequality (2.4) by

(3.1) (1− |z|2)|z|−1|ω′(z)| ≤ (1− |ω(z)|)H(|z|, |ω(z)|), |z| < 1,

where

H(r, s) =
(n+ 1)(1− r2)rns+ r2n+2 − s2

rn+2(1− s)
.
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Recall here that |ω(z)| ≤ |z|n+1 holds. Since the function s2− 2s is decreasing in 0 < s <
rn+1, we have

∂H

∂s
(r, s) =

s2 − 2s+ (n+ 1)(1− r2)rn + r2n+2

rn+2(1− s)2

≥ r2n+2 − 2rn+1 + (n+ 1)(1− r2)rn + r2n+2

rn+2(1− s)2
.

The numerator of the last term can be written in the form

rn
[
(n+ 1)(1− r2)− 2r(1− rn+1)

]
= rn(1− r)

[
(n+ 1)(1 + r)− 2r(1 + r + r2 + · · ·+ rn)

]
= rn(1− r)

n∑
j=0

(
1 + r − 2rj+1

)
.

It is now clear that (∂H/∂s)(r, s) > 0 in 0 < s ≤ rn+1. Thus H(r, s) is increasing in s and
therefore

H(r, s) ≤ H(r, rn+1) =
(n+ 1)(1− r2)rn−1

1− rn+1
= g(r).

Since

g′(r) =
(n+ 1)rn−2

(
(n− 1)(1− r2)− 2r2(1− rn−1)

)
(1− rn+1)2

=
(n+ 1)rn−2(1− r)

(1− rn+1)2

n−2∑
j=0

[
1− rj+2 + r(1− rj+1)

]
> 0,

the function g(r) is increasing and thus g(r) < g(1−) = 2 for 0 ≤ r < 1. Therefore, we
obtain

sup
0<s≤rn+1<1

H(r, s) = sup
0<r<1

g(r) = 2,

which is, indeed, independent of n.
The rest is same as in the previous section. We omit the details. �

Since 1− r ≤ 1− r2 = (1 + r)(1− r) ≤ 2(1− r), the inequalities

sup
|z|<1

(1− |z|)
∣∣∣∣p′(z)p(z)

∣∣∣∣ ≤ sup
|z|<1

(1− |z|2)
∣∣∣∣p′(z)p(z)

∣∣∣∣ ≤ 2 sup
|z|<1

(1− |z|)
∣∣∣∣p′(z)p(z)

∣∣∣∣
hold. Thus, when n = 0, the estimate in Theorem 6 is better than that in Theorem 1.

4. Examples of non-univalent functions

In this section, we present non-univalent meromorphic functions in the class M to
examine our univalence criteria given in Introduction. First, we introduce the example
given by Aksent’ev and Avhadiev [3].
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Example 7. Let r > 1 be given and set Ω = {w ∈ C : |w − r| < r}. For a number
c ∈ (0, 1/2], we set Φ = G ◦ F, where F (ζ) = ζ + c/ζ and G(ζ) = ζ + (1 + c)2/ζ. Then

Φ′(ζ) = 1− ζ−2 + cψ(ζ−2), where ψ(z) = ψc(z) = −(c+ 3)− (c2 + 3)z + (c2 − c)z2

(1 + cz)2
.

Note that the functions 1 − ζ−2 and ψ(ζ−2) take the value 0 at ζ = ±1. Since ψc is
uniformly bounded in D and ψ′(1) > 0, in order to see that F ′(D) ⊂ Ω for sufficiently
small c, it is enough to check that the (signed) curvature of the curve θ 7→ ψ(eiθ) is
positive at θ = 0, in other words, Re (1 + zψ′′(z)/ψ′(z))/|ψ′(z)| is positive at z = 1. A
direct computation gives

1 +
zψ′′(z)

ψ′(z)
=

3− 10c+ 2(c2 + c)z − c2z2

(3− cz)(1 + cz)
,

which shows Re (1 + ψ′′(1)/ψ′(1))/|ψ′(1)| > 0 for a small enough c > 0 as required.
We see now that Φ is not univalent in ∆ by observing that the two points ±i(1 + c +√
1 + 6c+ c2)/2 in ∆ are zeros of Φ.

The above example is qualitatively very nice but somewhat implicit because it is not
simple to give a right value of c for a given r > 1. The next two examples are more
concrete.

Example 8. We consider the function Fm ∈ M given by

Fm(ζ) = ζ − 2
∞∑

j=1

ζ1−mj

mj − 1

= ζ
(
22F1(1,− 1

m
; 1− 1

m
; ζ−m)− 1

)
, |ζ| > 1,

for each integer m ≥ 2, where 2F1(a, b; c;x) stands for the hypergeometric function. Note
that Fm has the m-fold symmetry

Fm(e2πi/mζ) = e2πi/mFm(ζ)

and belongs to the class Mm−1. Since the function hm defined by

hm(x) = 22F1(1,− 1
m

; 1− 1
m

;x)− 1 (x ∈ (0, 1))

has the properties that hm is monotone decreasing, hm(0) = 1 and limx→1− hm(x) = −∞,
there is the unique point xm such that h(xm) = 0 in the interval 0 < x < 1. Hence, the

function Fm has the m zeros e2πij/mx
−1/m
m , j = 0, 1, . . . ,m− 1, in ∆ and, in particular, is

not univalent in ∆. On the other hand, we have

F ′
m(ζ) = 1 + 2

∞∑
j=1

ζ−mj = p(ζ−m),

where p(z) = (1 + z)/(1 − z). It is a standard fact that p maps the unit disk onto the
right half-plane H = {w ∈ C : Rew > 0}. Therefore, F ′

m maps ∆ onto H in an m-to-1
way and ReF ′

m > 0 holds.

In particular, we have shown the following.
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Proposition 9. For each integer n ≥ 0, there is a non-univalent function F in the class
Mn such that ReF ′(ζ) > 0 in |ζ| > 1.

Note that the function F2 in the above example can be expressed also by

F2(ζ) = ζ − log
ζ + 1

ζ − 1
, |ζ| > 1.

A numerical computation yields, for instance,

x2 ≈ 0.419798,

x3 ≈ 0.667508,

x4 ≈ 0.808289.

The above functions can be used to examine univalence criteria. Note that, for a
function F ∈ M , the new function

F t(ζ) = tF
(ζ
t

)
, |ζ| > 1,

for t ∈ (0, 1) satisfies the relation (F t)′(ζ) = F ′(ζ/t). For instance, for m ≥ 2, the
function F t

m(ζ) = tFm(ζ/t) is not univalent as far as tm > xm, because (ζ/t)−m = xm has
m roots in |ζ| > 1 in this case. On the other hand, (F t

m)′ has the range {w ∈ C : w =
(1+tmz)/(1−tmz) for some z ∈ D} = {w ∈ C : |w−(1+t2m)/(1−t2m)| < 2tm/(1−t2m)}.
In this way, we have shown the following.

Proposition 10. Let Ωs = {w ∈ C : |w− (1 + s2)/(1− s2)| < 2s/(1− s2)} and n ≥ 1. If
s > xn+1, then the class Πn(Ωs) contains non-univalent functions.

Example 11. The construction is similar to that of Example 8. First note that the
analytic function ((1 + z)/(1− z))iβ gives a universal covering projection of the unit disk
onto the annulus A = {w ∈ C : e−πβ/2 < |w| < eπβ/2} for a positive constant β. Let
G ∈ Mm−1 be the function detemined by the relation G′(ζ) = ((ζm +1)/(ζm−1))iβ for an
integer m ≥ 2. Then G also has the m-fold symmetry. Let hβ(z) = 1/z−

∫ z

0
tm−2qβ(tm)dt,

where ((1 + z)/(1− z))iβ = 1 + zqβ(z), so that G(ζ) = hβ(1/ζ). Now take any root ω of
the polynomial zm + i and set ϕ(β) = ωhβ(ω). Since 1+ ixqβ(ix) = ((1+ ix)/(1− ix))iβ =
exp(2iβarctanh(ix)) = exp(−2β arctanx), we have for 0 < r ≤ 1

ωhβ(ωr) =
1

r
+

∫ r

0

itn−2qβ(−itm)dt

=
1

r
−
∫ r

0

(exp(2β arctan(tm))− 1) t−2dt.

Thus,

ϕ(β) = 1−
∫ 1

0

(exp(2β arctan(tm))− 1) t−2dt.

Since ϕ(0) = 1, ϕ(+∞) = −∞ and

ϕ′(β) = −
∫ 1

0

t−2 arctan(tm) exp(2β arctan(tm))dt < 0,
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there exists a unique βm such that ϕ(βm) = 0. We now simplify the equation ϕ(β) = 0.
Performing integration by parts and then setting x = arctan(tm), we have

ϕ(β) = eπβ/2 − 2β

∫ π/4

0

e2βx(tanx)−1/mdx

= eπβ/2

(
1− 2β

∫ π/4

0

e2β(x−π/4)(cotx)1/mdx

)
.

Thus we have arrived at the form in (1.5).
We now fix any β > βm. Then ωhβ(ωr) > 0 for a small enough r > 0 whereas ϕ(β) =

ωhβ(ω) < 0. Therefore, there exists an ρ ∈ (0, 1) such that G(1/(ωρ)) = hβ(ωρ) = 0.
In particular, G has at least m zeros in ∆ and thus is not univalent. By the above
observations, we have the following proposition.

Proposition 12. Let n be an integer with n ≥ 1 and let β > βn+1. Then there exists a
non-univalent function G ∈ Mn such that e−πβ/2 < |G′(ζ)| < eπβ/2 for |ζ| > 1.

By a numerical computation, one has

β2 ≈ 0.457807,

β3 ≈ 0.786518,

β4 ≈ 1.03144.

5. Applications to univalence criteria

We combine Theorem 1 or Theorem 6 with Theorem C to deduce several univalence
criteria for functions in M . The same method can be applied also to Mn for n ≥ 1,
but we do not go into details here. In order to make statements concise, we introduce
the notation Σ(k) to designate the set of those functions in Σ which can be extended to
k-quasiconformal mappings of the extended plane. For k = 1, simply we define Σ(1) = Σ
for convenience.

To examine Theorems 1 and 6, we assume Ω to be a disk containing 1 but not containing
0. Then we can express Ω as D(a, ρ) = {w : |w−a| < ρ}, where 0 < ρ ≤ |a| and |1−a| < ρ.
If we put p(z) = a+ ρz, then we compute

W (D(a, ρ)) = sup
z∈D

(1− |z|2) ρ

|a+ ρz|

= sup
0<r<1

(1− r2)
ρ

|a| − ρr

=
ρ

|a|
sup

0<r<1

1− r2

1− (ρ/|a|)r

=
2ρ/|a|

1 +
√

1− (ρ/|a|)2
,

where we have made a standard but tedious computation at the final step (see, for instance,
[13, Lemma 4.2]). Therefore, by Theorem 1, we conclude that

(5.1) B∗(F ) ≤ 2Cnρ/|a|
1 +

√
1− (ρ/|a|)2
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for F ∈ Πn(D(a, ρ)). It is easy to see that the right-hand side of the last inequality is less
than or equal to k if and only if ρ/|a| ≤ 4Cnk/(4C

2
n +k2). Thus we can show the following

by appealing to Theorem C.

Theorem 13. Let n be an integer with n ≥ 0 and a ∈ C, ρ > 0 satisfy ρ ≤ |a| and
|a− 1| < ρ. Suppose that

ρ

|a|
≤ 4Cnk

4C2
n + k2

for a constant k with 0 ≤ k ≤ 1. Then Πn(D(a, ρ)) ⊂ Σ(k).

We recall that Theorem D gives the stronger assertion Π(D(1, k)) ⊂ Σ(k) when a = 1
and ρ = k.

We next consider to apply Theorem 6. It is not simple to treat the case when a is not
real. Therefore, we further assume that a > 0 for simplicity. Then the conformal map p
of D onto D(a, ρ) with p(0) = 1 can be taken in the form p(z) = (1+Az)/(1+Bz), where
−1 < B < A ≤ 1. A simple computation gives us the relations A = (ρ2 − a2 + a)/ρ and
B = (1− a)/ρ.

First observe the expression (see [13, Lemma 4.1])

W = sup
z∈D

(1− |z|)
∣∣∣∣p′(z)p(z)

∣∣∣∣ =


(A−B) sup

0<r<1

1− r

(1− Ar)(1−Br)
if A+B ≤ 0,

(A−B) sup
0<r<1

1− r

(1 + Ar)(1 +Br)
if A+B ≥ 0.

At any event, we can easily see that W = A − B. Therefore, by Theorem 6, we obtain
the estimate

(5.2) B∗(F ) ≤ 2(A−B) =
2(ρ2 − (a− 1)2)

ρ

for F ∈ Π(D(a, ρ)). In the same way as above, we have the following.

Theorem 14. Let a > 0, ρ > 0 satisfy ρ ≤ a and |a− 1| < ρ. Suppose that

ρ2 − (a− 1)2 ≤ kρ

2
for a constant k with 0 ≤ k ≤ 1. Then Π(D(a, ρ)) ⊂ Σ(k).

As an example, let us consider the disk Ωs = {w ∈ C : |w − (1 + s2)/(1 − s2)| <
2s/(1− s2)}. In this case, A = s, B = −s, and therefore,

4ρ/|a|
1 +

√
1− (ρ/|a|)2

= 4s = 2(A−B),

which means that the esimates (5.1) with n = 0 and (5.2) are identical in this case. In
particular, Theorems 13 and 14 both imply that Π(Ωs) ⊂ Σ if s ≤ 1/4. This is, however,
weaker than Theorem D because Ωs ⊂ D(1, 1) for s ≤ 1/3. On the other hand, Proposition
10 implies that Π(Ωs) is not contained in Σ for s > x2 ≈ 0.4198.

However, Theorems 13 and 14 may imply the inclusion Π(D(a, ρ)) ⊂ Σ for a disk
D(a, ρ) which is not contained in D(1, 1). For instance, by Theorem 14, we see that
Π(D(3/2, 4/5)) ⊂ Σ but D(3/2, 4/5) is not a subset of D(1, 1). By the way, this is not
implied by Theorem 13.
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We next recall basic results for the values of W (Ω) for special domains Ω. We set

S(α, γ) = {w ∈ C : | argw − γ| < πα/2}
A(r1, r2) = {w ∈ C : r1 < |w| < r2},

where α > 0, γ ∈ R and 0 < r1 < r2 < ∞. The domain S(α, γ) is called a sector with
opening πα and vertex at 0. The domain A = A(r1, r2) is called a round annulus centered
at 0 with modulus m = log(r2/r1). We write m = modA. Then we have the following.

Lemma 15 ([13]).

W (S(α, γ)) = 2α, 0 < α < 2,

W (A(r1, r2)) =
2

π
log

r2
r1

=
2

π
modA(r1, r2), 0 < r1 < r2 <∞.

Combining this lemma with Theorems 1 and C, we can prove the following two results.
Theorems 2 and 3 are just special cases of them up to non-univalent examples, which
were supplied in the previous section.

Theorem 16. Let 0 ≤ k ≤ 1. If Ω is a sector with opening kπ/4 and vertex at 0 such
that 1 ∈ Ω. Then, Π(Ω) ⊂ Σ(k).

Theorem 17. Let 0 ≤ k ≤ 1. If Ω is a round annulus centered at 0 with modulus kπ/4
such that 1 ∈ Ω. Then, Π(Ω) ⊂ Σ(k).
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