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Abstract. In this paper, we consider ideal boundaries of Riemann surfaces
by themselves, and show that the set of natural equivalence classes of mutually
quasiconformally related ideal boundaries admits a complex Banach manifold
structure.

1. The ideal boundary

For an open Riemann surface R, we can consider various kinds of compactifica-
tions of R. In this note we consider the Royden’s one (cf. [1] and [10]).

To define the Royden compactification, first we take the set R(R) of bounded
continuous (complex) functions f on R which is differentiable in distribution sense
and that the Dirichlet integral

D(f) =
∫

R

df ∧ ∗df

of f is finite. Then

‖f‖ = sup
R

|f | +
√

D(f)

is a norm on R(R), and R(R) is a Banach algebra with respect to this norm. We
call this algebra the Royden algebra associated with R.

Now there is a compact Hausdorff space R∗, containing R as an open and dense
subset, such that every element in R(R) can be extended to a continuous function
on R∗ (and hence R(R) can be considered as a subset of the set C(R∗) of all
continuous functions on R∗) and that R(R) separates points of R∗, i.e. for every
pair of points p1 and p2 of R∗ there is a function in R(R) such that f(p1) �= f(p2).
Then such an R∗ is uniquely determined up to homeomorphisms fixing R point-
wise, and we call R∗ the Royden compactification of R. Also the compact subset
dR = R∗ − R is called the Royden boundary of R.

Here there are several ways to construct the Royden compactification canonically.
One way is to consider the set X of all characters on R(R). Here a multiplicative
linear functional χ on R(R) with χ(1) = 1 is called a character. And equipped with
the weak∗ topology, X is a compact Hausdorff space. Moreover, by considering the
point evaluations, we can regard R as an open and dense subset of X and X gives
a representative of the Royden compactification of R.

Remark R(R) is dense in C(R∗) with respect to the uniform topology.

Also we recall the following fact.
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Proposition 1 ([1],[10]). Every quasiconformal homeomorphism F of a Riemann
surface R1 onto another R2 can be extended to a homeomorphism of R∗

1 onto R∗
2.

Now, we can define another smaller compactification by using, instead of R(R),
the set KS(R) of continuous functions f which is a constant on every connected
component of the complement of some compact set. The Kerékártó-Stoilow com-
pactification R̂ of R is the compact Hausdorff space uniquely determined (up to
homeomorphisms fixing R point-wise) by the conditions that R is open and dense
in R̂, that every element of KS(R) can be extended to a continuous function on R̂,
and that KS(R) separates points of R̂.

Clearly, there is the canonical projection π from R∗ onto the Kerékártó-Stoilow
compactification R̂ of R such that π is the identical map on R. We call the closed
set dRp = π−1(p) a block of dR over p for every point p ∈ R̂ − R. A block dRp is
also open if p is isolated in R̂ − R.

When p ∈ R̂−R corresponds to a puncture of R, we call p a non-essential point
of R̂ − R, and the block dRp a non-essential block. Let N be the subset of R̂ − R
consisting of all non-essential points, and set

dRo = dR −
⋃

p∈N

dRp.

Then dRo is compact, and is called the essential part of dR, or the essential boundary
of R.

Definition We say that a pair (Y, R) of a compact topological space Y and
a Riemann surface R is a primitive ideal boundary if Y is homeomorphic to the
essential part dRo of the Royden boundary of R.

By Proposition 1, if another R′ is quasiconformally equivalent to R, the Royden
compactification of R′ is homeomorphic to R∗. So we need to restrict such an R
as in the above definition, in order to say that two ideal boundaries are the same.
And, considering complex structures near the ideal boundary only, we can define a
natural class of primitive ideal boundaries as follows.

Definition We say that primitive ideal boundaries (Y1, R1) and (Y2, R2) are con-
formally equivalent if there is a homeomorphism F of a neighborhood U of Y1 in
R∗

1 into R∗
2 such that F is conformal on U ∩ R1 and F (Y1) = Y2. Here we regard

that Yj is the essential boundary of R∗
j .

We call the conformal equivalence class of a primitive ideal boundary (Y, R) an
ideal boundary, which we denote by [Y, R], or simply by a representative Y if R is
clear or not important. Also we call such a Riemann surface R a supporting surface
of Y .

We say that an ideal boundary Y is of analytically (in)finite type if a supporting
surface of Y is of an analytically (in)finite.

Here note that an ideal boundary [Y, R] is determined uniquely by the complex
structure of R near Y .

Proposition 2. Suppose that (Y1, R1) is a primitive ideal boundary. Then if (Y1, R1)
and (Y2, R2) are conformally equivalent, then we can take the same Riemann sur-
face R as both of Rj, and hence (Y1, R) = (Y2, R) in the sense that the identical
map of R to itself can be extended to a homeomorphism of Y1 to Y2.



THE TEICHMÜLLER SPACE OF THE IDEAL BOUNDARY 3

Proof. Let F : U → R∗
2 be as in the definition of the conformal equivalence between

(Y1, R1) and (Y2, R2). Here we may assume that the relative boundary ∂U of U∩R1

in R1 consists of a finite number of analytic simple closed curves. Then, there is a
compact bordered Riemann surface S such that we can take R = U ∪ S as R1. By
identifying U and F (U), we can also take R as R2 and hence F is the identitical
map on U , which implies the assertion.

Next we say that a subsurface S of a Riemann surface R is almost compact
bordered if the closure S of S in the subsurface R

p
of R̂, obtained from R by filling

all points corresponding to punctures, is compact and the relative boundary ∂S of S
in R consists of a finite number of analytic simple closed curves in R. Furthermore,
if every component of ∂S divides R

p
, then we call an open set

U = R∗ − S ∪ ∂S ∪
(
∪p∈N, p∈S dRp

)

a canonical neighborhood of the ideal boundary [Y, R], and call (U ∩ R) an end of
R or for Y .

Definition We say that a map f of an ideal boundary [Y1, R1] to another [Y2, R2]
is a boundary map (considered as a map of Y1 to Y2) if there are a canonical
neighborhood U of Y1 in R∗

1 and a homeomorphism F : U → R∗
2 such that F = f

on Y1. Such a map F as above is called a supporting map of f .
If a boundary map f of [Y, R] to itself or to another [Y ′, R′] is a surjective

homeomorphism (as a map of Y1 to itself or to Y ′), then we call such an f a
boundary self-homeomorphism, or boundary homeomorphism, respectively.

Further, we say that f : Y → Y ′ is conformal, quasiconformal, and asymptotically
conformal if so is a supporting map F on U ∩ R.

Here recall that f is asymptotically conformal if and only if we can find a (1+ ε)-
quasiconformal supporting map of f for every ε > 0. (For the basic facts about
asymptotically conformal maps, see for instance, [5].)

2. Boundary self-homeomorphims

Let BH(Y ) be the group of all boundary self-homeomorphisms of an ideal bound-
ary [Y, R]. First we recall the following fact.

Proposition 3 ([8], also see [9]). f is an element of BH(Y ) if and only if f is a
quasiconformal boundary self-homeomorphism.

Proof. Since ”if”-part is clear, we assume that f ∈ BH(Y ). Then there are Riemann
surface R supporting Y and a homeomorphism F of a canonical neighborhood
U of Y in R∗ into R∗ which supports f . Then by Corollary in [8], there is a
quasiconformal homeomorphism of U ∩ R into R having the boundary value f on
Y , which implies the assertion.

Also note that a boundary self-homeomorphism of Y need not necessarily the
boundary map of a self-homeomorphism of R.

Theorem 4. There are an ideal boundary Y and an f ∈ BH(Y ) such that, for
every supporting surface R of Y , every quasiconformal self-homeomorphism of R
supports neither f nor f−1.
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Proof. Set

R0 = {|Im z| < 1} − {n | n ∈ Z, n ≥ 0},
and let Y be the ideal boundary supported by R0. Let f be the boundary self-
homeomorphism of Y supported by F0(z) = z + 1. We show that these Y and f
are desired ones.

For this purpose, suppose that there were a Riemann surface R1 supporting Y
and a quasiconformal self-homeomorphism F of R1 which, considered as a self-map
of R∗

1, supports f .
Let U be a canonical neighborhood of Y in R∗

0 such that F0(U) ⊂ R∗
0. Take

a smaller canonical neighborhood V in U so that V ∩ R0 can be considered also
as a subsurface of R1 and that F0(V ) and F (V ) are contained in U . F0 and F
restricted to V ∩ R0 can be extended to quasiconformal self-homeomorphisms of
{|Im z| < 1}, which in turn can be identified with {|z| < 1} by a Riemann map.
Moreover, they can be extended continuously to {|z| ≤ 1}, where the boundary
values coincide by the assumption. Hence denoting by the same notations, we
conclude that Φ = F−1 ◦F0 can be extended to {|z| ≤ 1} by the identical boundary
values.

Now since Φ belongs to R({|z| < 1}), so is g(z) = Φ(z) − z, which identically
vanishes on {|z| = 1}, and hence Φ gives the identical self-map of Y . Here if there
were a sequence of punctures pn of V ∩R0 (considered as a subsurface of {|z| < 1})
such that |pn| tend to 1 and g(pn) �= 0 for every n, then since Φ(pn) also tend to
{|z| = 1}, by taking a subsequence if necessary, we may further assume that

Φ(pn) �∈ {pj}∞j=1.

Hence we can construct a function P ∈ R(R) such that P (pn) = 1 but P (Φ(pn)) = 0
for every n, which would imply that Φ is not the identical map of Y . Indeed, take
a mutually disjoint, simply connected neighborhood Un of pn so that Φ(pn) �∈ Un

for every n, and map Un onto {|z| < 1} by a Riemann map gn so that gn(pn) = 0.
Consider

hn(z) =
− log(2|z|)

n3

on Wn = {e−n3
/2 < |z| < 1/2}, and set Pn = hn ◦ gn on g−1(Wn). Extend Pn to a

continuous function by setting 0 or 1 in each connected component of R−g−1
n (Wn),

we have a function Pn in R(R) such that D(Pn) = 2π/n3. And

P =
∞∑

n=1

Pn

is a desired function.
Thus there is a canonical neighborhood V ′ of Y (contained in V ) such that

F0(p) = F (p), for every puncture p in V ′. But then the number of punctures of
R1 outside V ′ is smaller than that of punctures of R1 outside F (V ′), which is a
contradiction.

Since the case of F−1
0 can be treated similarly, we have the assertion.

Next, there are boundary self-homeomorphism f of Y with no fixed points. For
instance, rotations gives such examples. On the other hand, the following fact
seems to be non-trivial.
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Proposition 5. There is an ideal boundary Y such that every element of BH(Y )
fixes the same point of Y .

Proof. In general, the harmonic boundary d0R of the Royden boundary is invariant
under quasiconformal boundary homeomorphisms ([10] III.7.C Theorem. Also see
[10] III.8.C Theorem), and hence by Proposition 3, d0R∩Y is invariant under every
f ∈ BH(Y ). On the other hand, if a supporting surface R belongs to OHD − OG,
a theorem of Royden states that d0R ∩ Y consists of a single point (cf. [10] III.F
Theorem), which implies the assertion.

Finally, eventually trivial conformal equivalence is trivial. Here we say that a
conformal boundary self-homeomorphism f : Y → Y is eventually trivial if f is
supported by a conformal homeomorphism F of a canonical neighborhood U of Y
in R∗ into R∗ such that F on U ∩R is homotopic to the identical map of U ∩R in
R.

Proposition 6. Suppose that [Y, R] is an ideal boundary of analytically infinite
type. Let f1, f2 ∈ BH(Y ). If f−1

1 ◦ f2 is an eventually trivial conformal boundary
self-homeomorphism, then f1 = f2.

Proof. By a theorem of Maitani in [6], F as above is the identical map of U , and
hence so is f−1

1 ◦ f2.

3. The Teichmüller space

Similarly as before, for ideal boundaries [Y, R] and [Y ′, R′], we say that a qua-
siconformal boundary homeomorphisms f : Y → Y ′ is homotopic to an asymptoti-
cally conformal boundary homeomorphism g : Y → Y ′ if there are supporting maps
F : U → (R′)∗ of f and G : U → (R′)∗ of g, where U is a canonical neighborhood
of Y in R∗, such that F is quasiconformal on U ∩R, G is asymptotically conformal
on U ∩ R, and F on U ∩ R is homotopic to G on U ∩ R in R.

In particular, if [Y, R] = [Y ′, R′] and G is the identical map, then again we say
that f and F are eventually trivial.

Theorem 7. For every ideal boundary Y , there is a non-identical, eventually triv-
ial and asymptotically conformal, boundary self-homeomorphism of Y .

Proof. Let U be a canonical neighborhood of Y in R∗, where R is a supporting
surface of Y . Take a sequence of points pn on U ∩ R escaping from any compact
set of R, and a mutually disjoint, simply connected open neighborhood Un of pn

for every n. Map each Un onto {|z| < 1} by a Riemann map gn so that gn(pn) = 0.
Set

ϕn(z) =
z + (1/n)
1 + (1/n)z

on {|z| < 1}, then ϕn is a (1/n)-quasiconformal self-homeomorphism of {|z| <
1} and ϕn(z) = z on {|z| = 1}. Hence we can define a (1/n)-quasiconformal
homeomorphism Φ of U into R∗ by setting g−1

n ◦ ϕn ◦ gn on Un for every n, and
to be the identical map outside ∪∞

n=1 Un. Then Φ gives a eventually trivial and
asymptotically conformal boundary self-homeomorphism f of Y .

Next similarly as before, set

hn(z) =
− log(n|z|)

n3
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on Wn = {(1/n)e−n3
< |z| < (1/n)}. Then we have an element Pn of R(R) by

setting Pn = hn ◦ gn on g−1
n (Wn) and extending it by a constant 0 or 1 on each

component of R − g−1
n (Wn). Since D(Pn) = 2π/n3, P =

∑∞
n=1 Pn also belongs to

R(R), and P (pn) = 1 and P (Φ(pn)) = 0 for every n. Thus f is not the identical
map.

We say that two ideal boundaries Y1 and Y2 are quasiconformally related if there
is a quasiconformal boundary homeomorphism of Y1 onto Y2. Then we can define
the Teichmüller space of quasiconformally related ideal boundaries.

Definition For a given ideal boundary Y0, consider pairs (Y, f) of an ideal bound-
ary Y and a quasiconformal boundary homeomorphism f : Y0 → Y , which is called
a marking of Y .

We say that two pairs (Y1, f1) and (Y2, f2) are Teichmüller equivalent if there is
asymptotically conformal boundary homeomorphism of Y1 to Y2 which is homotopic
to f2 ◦ f−1

1 .
We call the set of all Teichmüller equivalence classes [Y, f ] (or more precisely

[[Y, R], f ] of marked ideal boundaries (Y, f) the Teichmüller space of the ideal
boundary Y0, which is denoted by T (Y0). A point of T (Y0) is called a marked
ideal boundary.

Here note that if Y0 is an ideal boundary of analytically finite type, then Y0

is empty, and hence T (Y0) consists of a single point (, which can be compared
with results in [2],[4]). It is remarkable that the Teichmüller space of every ideal
boundary admits a natural complex structure.

Theorem 8. Let Y0 be an ideal boundary. Then the Teichmüller space T (Y0) of
Y0 has a canonical complex Banach manifold structure.

Proof. A theorem of Miyaji in [7] implies that the asymptotic Teichmüller spaces
AT (R0) of R0 are mutually biholomorphic for all supporting surfaces R0 of Y0.
Indeed, if R1 and R2 are such surfaces, then there is another supporting surface
R3 of Y0 and analytically finite Riemann surfaces S1 and S2 such that R3 and Sj

are obtained from Rj by applying a conformal 2-surgery along a dividing simple
closed curve for each j. And Reducing Theorem in [7] states that the asymptotic
Teichmüller space AT (Rj) is biholomorphic to the product AT (Sj) × AT (R3) for
each j. Here since AT (Sj) are trivial, we have a canonical biholomorphism between
AT (Rj). (For the details of the asymptotic Teichmüller theory, see [5],[2], and [3].)

Next fix a supporting surface R0 of Y0. Then we can construct a natural bijection
from T (Y0) onto AT (R0) as follows. Take any element [Y, f ] of T (Y0). Then there
is a quasiconformal homeomorphism F of U ∩ R0 of Y in R0 into R where U is a
canonical neighborhood of Y0 in R0 and R is a supporting surface of Y . Then F can
be extended to a quasiconformal map of R0 onto another supporting surface R′ of
Y (possibly different from R). which gives a point in AT (R0). By the definitions,
we can easily see that this map induces a bijection of T (Y0) to AT (R0). Thus we
have prove the assertion.

Remark We say that two boundary self-homeomorpihsms f1 and f2 in BH(Y0)
are AC-equivalent if f2 ◦ f−1

1 is homotopic to a asymptotically conformal self-
homeomorphism of Y . The equivalence class of f is called an AC-mapping class,
and denoted by [f ].



THE TEICHMÜLLER SPACE OF THE IDEAL BOUNDARY 7

Now every element f of BH(Y0) naturally induces an automoprhism f∗ of T (Y0),
by setting

f∗([Y, g]) = [(Y, g ◦ f−1)].

Then it is clear from the definition that f∗
1 = f∗

2 if and only if [f1] = [f2].
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