The Hurwitz space of a Bell representation

Moonja Jeong and Masahiko Taniguchi

1 The coefficient body

We say that a bounded domain D in \mathbb{C} is an *n*-ply connected non-degenerate planar domain if the boundary of D in \mathbb{C} consists of n simple closed curves. Bell proposed in [1] a family of simple such domains, and we have shown in [4] that every non-degenerate *n*-ply connected planar domain with n > 1 is mapped biholomorphically onto a domain $W_{\mathbf{a},\mathbf{b}}$ proposed by Bell, which is defined by

$$W_{\mathbf{a},\mathbf{b}} = \left\{ z \in \mathbb{C} : \left| z + \sum_{k=1}^{n-1} \frac{a_k}{z - b_k} \right| < 1 \right\}$$

with suitable complex vectors $\mathbf{a} = (a_1, a_2, \cdots, a_{n-1})$ and $\mathbf{b} = (b_1, b_2, \cdots, b_{n-1})$. We call such a domain $W_{\mathbf{a},\mathbf{b}}$ a *Bell representation* of W. (Also see [5].)

Definition 1.1 Let \mathbf{B}_n be the locus in \mathbb{C}^{2n-2} consisting of all points (\mathbf{a}, \mathbf{b}) such that the corresponding domains $W_{\mathbf{a},\mathbf{b}}$ are non-degenerate *n*-ply connected planar domains. We call this locus \mathbf{B}_n the *coefficient body* of degree n.

Also we set

$$\mathbf{B}_{n}^{*} = \{(a_{1}, \cdots, a_{n-1}, \mathbf{b}) \mid (a_{1}^{2}, \cdots, a_{n-1}^{2}, \mathbf{b}) \in \mathbf{B}_{n}\},\$$

and call it the *modified coefficient body* (of degree n).

It is obvious that \mathbf{B}_n and \mathbf{B}_n^* are contained in the product space $(\mathbb{C}^*)^{n-1} \times F_{0,n-1}\mathbb{C}$, where

$$F_{0,n-1}\mathbb{C} = \{(z_1, \cdots, z_{n-1}) \in \mathbb{C}^{n-1} \mid z_j \neq z_k \text{ if } j \neq k\}$$

is the configuration space of n-1 points in \mathbb{C} . And \mathbf{B}_n^* is a 2^{n-1} -sheeted smooth holomorphic covering space of \mathbf{B}_n .

In the sequel, we assume that n > 2, since \mathbf{B}_2 and \mathbf{B}_2^* are explicitly known. Note that \mathbf{B}_n^* is *circular*, i.e. for every point $(\mathbf{a}, \mathbf{b}) \in \mathbf{B}_n^*$ and every $\theta \in \mathbb{R}, e^{i\theta}(\mathbf{a}, \mathbf{b}) \in \mathbf{B}_n^*$. Also for every point $(\mathbf{a}, \mathbf{b}) \in \mathbf{B}_n^*$ and every $0 < r \leq 1$, $r(\mathbf{a}, \mathbf{b}) \in \mathbf{B}_n^*$.

Theorem 1.1 ([6]) The modified coefficient body \mathbf{B}_n^* is a circular domain homeomorphic to \mathbf{B}_n , and \mathbf{B}_n has the same homotopy type as that of $(\mathbb{C}^*)^{n-1} \times F_{0,n-1}\mathbb{C}$.

Remark The fundamental group of $F_{0,n-1}\mathbb{C}$ is called the *pure braid group*, and its structure is well-known. See for instance [2].

2 The Hurwitz spaces

Now, rational functions can be parametrized also by the set of critical values.

Definition 2.1 Let Γ be the set of all points (\mathbf{a}, \mathbf{b}) of \mathbf{B}_n such that the corresponding rational function

$$f_{\mathbf{a},\mathbf{b}} = z + \sum_{k=1}^{n-1} \frac{a_k}{z - b_k}$$

has either a non-simple critical point or has a pair of critical points whose images by $f_{\mathbf{a},\mathbf{b}}$ are the same. We call Γ the *collision locus* of \mathbf{B}_n .

Then for every point (\mathbf{a}, \mathbf{b}) in $\mathbf{B}_n - \Gamma$, the rational function $f_{\mathbf{a}, \mathbf{b}}$ has 2n - 2 critical values, which we denote by

$$S_{\mathbf{a},\mathbf{b}} = \{\alpha_1, \cdots, \alpha_{2n-2}\}.$$

This set can be considered as a point in the unordered configuration space $B_{0,2n-2}\mathbb{C}$, the quotient space of $F_{0,2n-2}\mathbb{C}$ by the symmetric group. Actually, we know that $S_{\mathbf{a},\mathbf{b}}$ is a point of the unordered configuration space $B_{0,2n-2}U$ of 2n-2 points on the unit disc U. Hence we can define the projection

$$\pi_S: \mathbf{B}_n - \Gamma \to B_{0,2n-2}U$$

by setting $\pi_S(\mathbf{a}, \mathbf{b}) = S_{\mathbf{a}, \mathbf{b}}$. We have the following theorem about the projection π_S .

Theorem 2.1 ([6]) The projection π_S gives a $(2n-2)! n^{n-3}$ -sheeted proper holomorphic covering of $B_{0,2n-2}U$ by $\mathbf{B}_n - \Gamma$ for every n > 2.

We can see this theorem by regarding $\mathbf{B}_n - \Gamma$ as a Hurwitz space. First we intruduce a conceptually natural kind of such spaces.

Let f_1 and f_2 be rational functions. We say that f_1 and f_2 determine the same covering structure if there are Möbius transformations γ and δ of $\hat{\mathbb{C}}$ such that $f_2 = h \circ f_1 \circ g^{-1}$. We denote by \mathcal{C}_f the covering structure determined by f, and call the set of all covering structures determined by rational functions g which are quasiconformally equivalent to f the prime Hurwitz space of f, which is denoted by $H^{\#}(f)$. Here we say that f and gare quasiconformally equivalent if there are quasiconformal self-maps φ and ψ of $\hat{\mathbb{C}}$ such that $g = \psi \circ f \circ \varphi^{-1}$.

We introduce the prime Hurwitz distance $d_{H^{\#}}$ on $H^{\#}(f)$ by setting

$$d_{H^{\#}}(\mathcal{C}_{f_1}, \mathcal{C}_{f_2}) = \inf_{\varphi} \log K(\varphi),$$

where the infimum is taken over all quasiconformal maps φ of $\hat{\mathbb{C}}$ which satisfy $\psi \circ f_2 \circ \varphi^{-1} = f_1$ with suitable quasiconformal maps ψ of $\hat{\mathbb{C}}$.

Proposition 2.1 $d_{H^{\#}}$ is actually a distance and complete on $H^{\#}(f)$.

Proof. If $d_{H^{\#}}(\mathcal{C}_{f_1}, \mathcal{C}_{f_2}) = 0$, then there are sequences $\{\psi_n\}$ and $\{\varphi_n\}$ of quasiconformal maps of $\hat{\mathbb{C}}$ fixing $0, 1, \infty$ such that $\psi_n \circ f_2 \circ \varphi_n^{-1} \in \mathcal{C}_{f_1}$ for every n, and $K(\varphi_n) = K(\psi_n)$ tend to 1 as n tend to ∞ . Then ψ_n and φ_n converge to Möbius transformations γ and δ , respectively, which shows that $d_{H^{\#}}$ is actually a distance.

Similarly, let $\{\mathcal{C}_{f_n}\}$ be a Cauchy sequence with respect to $d_{H^{\#}}$. Then by a standard argument and taking subsequences if necessary, we can find sequences $\{\psi_n\}$ and $\{\varphi_n\}$ of quasiconformal maps of $\hat{\mathbb{C}}$ fixing $0, 1, \infty$ such that $\psi_n \circ f_1 \circ \varphi_n^{-1} \in \mathcal{C}_{f_n}$ for every n, and quasiconformal maps ψ and φ of $\hat{\mathbb{C}}$, such that $f_{\infty} = \psi \circ f_1 \circ \varphi^{-1}$ is a rational function and $K(\varphi_n \circ \varphi^{-1})$ and $K(\psi_n \circ \psi^{-1})$ tend to 1 as n tend to ∞ . This implies that \mathcal{C}_{f_n} converges to $\mathcal{C}_{f_{\infty}}$ with respect to $d_{H^{\#}}$, which shows completeness.

But a finer equivalence relation is often considered.

Definition 2.2 We say that rational functions f_1 and f_2 determine the same isomorphism class if there is a Möbius transformation γ such that $f_2 = f_1 \circ \gamma$. We call the set of all isomorphism classes \mathcal{I}_g of rational functions g which are quasiconformally equivalent to f the Hurwitz space of f, and denote it by H(f).

Here, we distinguish the value ∞ and assume that $\psi(\infty) = \infty$ for every quasiconformal map ψ appeared in quasiconformal equivalence relation $g = \psi \circ f \circ \varphi^{-1}$

Example 1 The set $H_{0,n}[n]$ of genus 0 and degree n with type (n), consisting of all isomorphism classes of polynomials of degree n in general position, is the Hurwitz space H(f) for any such an f.

The set $H_{0,n}[1^n]$ of genus 0 and degree n with type $1^n = (1, \dots, 1)$, consisting of all isomorphism classes of rational functions of degree n in general position with n simple poles, is the Hurwitz space H(f) for any such an f.

Remark The coefficient representation for H(f) is not faithful in general. Also see [10].

We can define the normalized Hurwitz distance d_H on H(f) by setting

$$d_H(\mathcal{I}_{f_1}, \mathcal{I}_{f_2}) = \inf_{\varphi} \log K(\varphi),$$

where the infimum is taken over all quasiconformal maps φ of $\hat{\mathbb{C}}$ satisfying $f_1 = \psi \circ f_2 \circ \varphi^{-1}$ with quasiconformal maps ψ of $\hat{\mathbb{C}}$ normalized as follows: Let *n* be the degree of *f*. Prescribe 2n + 1 distinct points in $\hat{\mathbb{C}}$ including ∞ and assume that each ψ fixes three of them including ∞ .

Then similarly as in the proof of the previous proposition, we have

Proposition 2.2 d_H is actually a distance and complete on H(f).

Remark Historically, the Hurwitz space of a rational function f is defined algebraically. Natanzon showed that such Hurwitz spaces are the same as the set Top(f) of all isomorphism classes of rational functions g which are *topologically equivalent* to f, i.e. there are self-homeomorphisms φ and ψ of $\hat{\mathbb{C}}$ such that $\psi(\infty) = \infty$ and $g = \psi \circ f \circ \varphi^{-1}$ (cf. [7]). Finally we consider the marked Hurwitz space $MH_{0,n}[1^n]$ of all isomorphism classes of rational functions of degree n in general position with n ordered simple poles. Then another Hurwitz space MH_nU in $MH_{0,n}[1^n]$, consisting of all isomorphism classes of those with critical values, all of which are contained in U, is a complete metric space with another normalized Hurwitz metric

$$d_{MH,U}(\mathcal{I}_{f_1}, \mathcal{I}_{f_2}) = \inf_{\varphi} \log K(\varphi),$$

where the infimum is taken over all quasiconformal maps φ of $\hat{\mathbb{C}}$ preserving the order of poles and satisfying $f_1 = \psi \circ f_2 \circ \varphi^{-1}$ with quasiconformal selfmaps ψ of $\hat{\mathbb{C}}$ which satisfy $\psi(U) = U$ and fix points ± 1 and ∞ .

Theorem 2.2 ([6]) $\mathbf{B}_n - \Gamma$ can be identified with MH_nU .

3 The synthetic Teichmüller spaces

To recover \mathbf{B}_n from $\mathbf{B}_n - \Gamma$, we need, for instance, to compactify the marked Hurwitz spaces $MH_{0,n}[1^n]$.

Remark The Hurwitz spaces of a rational function can be compactified naturally. See [3] and [8]. We call these compactifications as the *DENT* compactification. But they have the singularities in general. And the boundary part of $\mathbf{B}_n - \Gamma$ corresponding to Γ in the DENT compactification of the marked Hurwitz space $MH_{0,n}[1^n]$ may be different from Γ .

Definition 3.1 Let $f = f_{\mathbf{a},\mathbf{b}}$ correspond to $\mathbf{a}, \mathbf{b} \in \mathbf{B}_n$. Then the *full deformation set* FD(f) of f is the set of all meromorphic functions g on \mathbb{C} such that there are quasiconformal self-maps φ of \mathbb{C} which fix 0 and 1, and satisfy the $qc-L^{\infty}$ condition:

$$D_f(g;\varphi) = \|f - g \circ \varphi\|_{\infty} \left(= \sup_{\mathbb{C}} |f - g \circ \varphi| \right) < \infty.$$

For every pair of functions f_1 and f_2 in FD(f), we set

$$d(f_1, f_2) = \inf \left(\log K(\varphi_1 \circ \varphi_2^{-1}) + \|f_1 \circ \varphi_1 - f_2 \circ \varphi_2\|_{\infty} \right),$$

where the infimum is taken over all quasiconformal maps φ_1 and φ_2 of \mathbb{C} which fix 0 and 1, and satisfy the qc- L^{∞} conditions $D_f(f_j; \varphi_j) < \infty$. This dis actually a distance, and FD(f) equipped with this distance is a complete metric space. We call the distance d defined above the synthetic Teichmüller distance on FD(f). The space FD(f) equipped with this synthetic Teichmüller distance is called the full synthetic deformation space of f and is denoted as FSD(f).

Remark The synthetic deformation space is firstly defined for an entire functions. See [9]. The results for structurally finite entire functions such as in [9] can be formulated and proved also for structurally finite meromorphic functions.

Theorem 3.1 For every $f = f_{\mathbf{a},\mathbf{b}}$ with $(\mathbf{a},\mathbf{b}) \in \mathbf{B}_n$, FSD(f) is the set $Rat_n[1^n]$ consisting of all rational functions of degree n with simple poles which include ∞ .

Proof. First, it is easy to see that every $g \in Rat_n[1^n]$ belongs to FSD(f).

On the other hand, let g be a meromorphic function belonging to FSD(f). Take a quasiconformal map φ of \mathbb{C} such that $D_f(g;\varphi) < +\infty$. Then

$$\lim_{z \to \infty} g(z) = \infty,$$

i.e., g has a pole at ∞ , and hence is a rational function.

Next for a sufficiently small $\epsilon > 0$, take discs

$$D_k = \{ |z - b_k| < \epsilon \}$$
 $(k = 1, \cdots, n-1)$

$$D_n = \{ |z| > 1/\epsilon \} \cup \{\infty\}.$$

Here we may assume that $f(D_k)$ is disjoint from

$$\{|z| \le 2D_f(g;\varphi)\},\$$

and that the winding number of the image $f(C_k)$ around 0 is -1 for every $k = 1, \dots, n$, where C_k is the boundary of D_k . Then the assumption implies that $g(\varphi(D_k))$ is disjoint from $\{|z| \leq D_f(g; \varphi)\}$ and that the winding number of $g(\varphi(C_k))$ around 0 is -1 for every $k = 1, \dots, n$. Thus $\varphi(D_k)$ contains no

zeros and a single simple pole for every k, which implies that the degree of g is n.

Now for our purpose, we consider the marked full synthetic deformation space MFSD(f) of a given $f = f_{\mathbf{a},\mathbf{b}}$ with $(\mathbf{a},\mathbf{b}) \in \mathbf{B}_n$, by keeping the order of simple poles as before, which is again a complete metric space.

Corollary 1 MFSD(f) is the set $MRat_n[1^n]$ of all rational functions of degree n with ordered simple poles which include ∞ , and hence is independent of the choice of f.

The coefficient body \mathbf{B}_n is a subset of MFSD(f), and the relative topology on \mathbf{B}_n is the same as the relative topology induced from that of $(\mathbb{C}^*)^{n-1} \times F_{0,n-1}\mathbb{C}$.

References

- [1] S. Bell, Finitely generated function fields and complexity in potential theory in the plane, Duke Math. J. **98**, (1999), 187–207.
- [2] S. Birman, Braids, Links, and Mapping Class Groups, Ann. Math. Studeis, 82, Princeton, 1975.
- [3] S. Diaz, On the Natanzon-Turaev compactification of the Hurwitz space, Proc. Amer. Math. Soc. 130, (2001), 613–618.
- [4] M. Jeong and M. Taniguchi, Bell representation of finitely connected planar domains, Proc. Amer. Math. Soc. 131, (2003), 2325–2328.
- [5] M. Jeong and M. Taniguchi, Algebraic kernel functions and representation of planar domains, J. Korean Math. Soc. 40, (2003), 447–460.
- [6] M. Jeong and M. Taniguchi, The coefficient body of Bell representations of finitely connected planar domains, J. Math. Anal. Appl., 295 (2004) 620–632
- [7] S. M. Natanzon, *Hurwitz spaces*, Topics on Riemann surfaces and Fuchsian Groups, London Math. Soc. Lecture Notes 287, (2001), 165– 177.

- [8] S. M. Natanzon and V. Turaev, A compactification of the Hurwitz spaces, Topology 38, (1999), 889–914.
- [9] M. Taniguchi, Synthetic deformation spaces of an entire function, Contemporary Math. **303**, (2002), 107–136.
- [10] M. Taniguchi, Covering structure and dynamical structure of a structurally finite entire function, Kodai Math. J., to appear.

Moonja JEONG	Masahiko TANIGUCHI
Department of Mathematics	Department of Mathematics
University of Suwon	Kyoto University
Hwasung-si, Kyunggi-do, KOREA	Kyoto 606, JAPAN