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1 The coefficient body

We say that a bounded domain D in C is an n-ply connected non-degenerate
planar domain if the boundary of D in C consists of n simple closed curves.
Bell proposed in [1] a family of simple such domains, and we have shown in
[4] that every non-degenerate n-ply connected planar domain with n > 1 is
mapped biholomorphically onto a domain Wa,b proposed by Bell, which is
defined by

Wa,b =

{
z ∈ C :

∣∣∣∣∣z +
n−1∑

k=1

ak

z − bk

∣∣∣∣∣ < 1

}

with suitable complex vectors a = (a1, a2, · · · , an−1) and b = (b1, b2, · · · , bn−1).
We call such a domain Wa,b a Bell representation of W . (Also see [5].)

Definition 1.1 Let Bn be the locus in C2n−2 consisting of all points (a,b)
such that the corresponding domains Wa,b are non-degenerate n-ply con-
nected planar domains. We call this locus Bn the coefficient body of degree
n.

Also we set

B∗
n = {(a1, · · · , an−1,b) | (a2

1, · · · , a2
n−1,b) ∈ Bn},

and call it the modified coefficient body (of degree n).

It is obvious that Bn and B∗
n are contained in the product space (C∗)n−1×

F0,n−1C, where

F0,n−1C = {(z1, · · · , zn−1) ∈ Cn−1 | zj ̸= zk if j ̸= k}
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is the configuration space of n − 1 points in C. And B∗
n is a 2n−1-sheeted

smooth holomorphic covering space of Bn.
In the sequel, we assume that n > 2, since B2 and B∗

2 are explicitly
known. Note that B∗

n is circular, i.e. for every point (a,b) ∈ B∗
n and every

θ ∈ R, eiθ(a,b) ∈ B∗
n. Also for every point (a,b) ∈ B∗

n and every 0 < r ≤ 1,
r(a,b) ∈ B∗

n.

Theorem 1.1 ([6]) The modified coefficient body B∗
n is a circular domain

homeomorphic to Bn, and Bn has the same homotopy type as that of (C∗)n−1×
F0,n−1C.

Remark The fundamental group of F0,n−1C is called the pure braid group,
and its structure is well-known. See for instance [2].

2 The Hurwitz spaces

Now, rational functions can be parametrized also by the set of critical values.

Definition 2.1 Let Γ be the set of all points (a,b) of Bn such that the
corresponding rational function

fa,b = z +
n−1∑

k=1

ak

z − bk

has either a non-simple critical point or has a pair of critical points whose
images by fa,b are the same. We call Γ the collision locus of Bn.

Then for every point (a,b) in Bn−Γ, the rational function fa,b has 2n−2
critical values, which we denote by

Sa,b = {α1, · · · , α2n−2}.

This set can be considered as a point in the unordered configuration space
B0,2n−2C, the quotient space of F0,2n−2C by the symmetric group. Actually,
we know that Sa,b is a point of the unordered configuration space B0,2n−2U
of 2n − 2 points on the unit disc U . Hence we can define the projection

πS : Bn − Γ → B0,2n−2U

by setting πS(a,b) = Sa,b. We have the following theorem about the projec-
tion πS.
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Theorem 2.1 ([6]) The projection πS gives a (2n− 2)! nn−3-sheeted proper
holomorphic covering of B0,2n−2U by Bn − Γ for every n > 2.

We can see this theorem by regarding Bn − Γ as a Hurwitz space. First
we intruduce a conceptually natural kind of such spaces.

Let f1 and f2 be rational functions. We say that f1 and f2 determine
the same covering structure if there are Möbius transformations γ and δ of
Ĉ such that f2 = h ◦ f1 ◦ g−1. We denote by Cf the covering structure
determined by f , and call the set of all covering structures determined by
rational functions g which are quasiconformally equivalent to f the prime
Hurwitz space of f , which is denoted by H#(f). Here we say that f and g
are quasiconformally equivalent if there are quasiconformal self-maps ϕ and
ψ of Ĉ such that g = ψ ◦ f ◦ ϕ−1.

We introduce the prime Hurwitz distance dH# on H#(f) by setting

dH#(Cf1 , Cf2) = inf
ϕ

log K(ϕ),

where the infimum is taken over all quasiconformal maps ϕ of Ĉ which satisfy
ψ ◦ f2 ◦ ϕ−1 = f1 with suitable quasiconformal maps ψ of Ĉ.

Proposition 2.1 dH# is actually a distance and complete on H#(f).

Proof. If dH#(Cf1 , Cf2) = 0, then there are sequences {ψn} and {ϕn} of

quasiconformal maps of Ĉ fixing 0, 1,∞ such that ψn ◦ f2 ◦ ϕ−1
n ∈ Cf1 for

every n, and K(ϕn) = K(ψn) tend to 1 as n tend to ∞. Then ψn and ϕn

converge to Möbius transformations γ and δ, respectively, which shows that
dH# is actually a distance.

Similarly, let {Cfn} be a Cauchy sequence with respect to dH# . Then
by a standard argument and taking subsequences if necessary, we can find
sequences {ψn} and {ϕn} of quasiconformal maps of Ĉ fixing 0, 1,∞ such
that ψn ◦ f1 ◦ ϕ−1

n ∈ Cfn for every n, and quasiconformal maps ψ and ϕ of

Ĉ, such that f∞ = ψ ◦ f1 ◦ ϕ−1 is a rational function and K(ϕn ◦ ϕ−1) and
K(ψn ◦ ψ−1) tend to 1 as n tend to ∞. This implies that Cfn converges to
Cf∞ with respect to dH# , which shows completeness.

But a finer equivalence relation is often considered.
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Definition 2.2 We say that rational functions f1 and f2 determine the same
isomorphism class if there is a Möbius transformation γ such that f2 = f1◦γ.
We call the set of all isomorphism classes Ig of rational functions g which
are quasiconformally equivalent to f the Hurwitz space of f , and denote it
by H(f).

Here, we distinguish the value ∞ and assume that ψ(∞) = ∞ for every
quasiconformal map ψ appeared in quasiconformal equivalence relation g =
ψ ◦ f ◦ ϕ−1

Example 1 The set H0,n[n] of genus 0 and degree n with type (n), consisting
of all isomorphism classes of polynomials of degree n in general position, is
the Hurwitz space H(f) for any such an f .

The set H0,n[1n] of genus 0 and degree n with type 1n = (1, · · · , 1),
consisting of all isomorphism classes of rational functions of degree n in
general position with n simple poles, is the Hurwitz space H(f) for any such
an f .

Remark The coefficient representation for H(f) is not faithful in general.
Also see [10].

We can define the normalized Hurwitz distance dH on H(f) by setting

dH(If1 , If2) = inf
ϕ

log K(ϕ),

where the infimum is taken over all quasiconformal maps ϕ of Ĉ satisfying
f1 = ψ ◦ f2 ◦ ϕ−1 with quasiconformal maps ψ of Ĉ normalized as follows:
Let n be the degree of f . Prescribe 2n + 1 distinct points in Ĉ including ∞
and assume that each ψ fixes three of them including ∞.

Then similarly as in the proof of the previous proposition, we have

Proposition 2.2 dH is actually a distance and complete on H(f).

Remark Historically, the Hurwitz space of a rational function f is defined
algebraically. Natanzon showed that such Hurwitz spaces are the same as
the set Top(f) of all isomorphism classes of rational functions g which are
topologically equivalent to f , i.e. there are self-homeomorphisms ϕ and ψ of
Ĉ such that ψ(∞) = ∞ and g = ψ ◦ f ◦ ϕ−1 (cf. [7]).
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Finally we consider the marked Hurwitz space MH0,n[1n] of all isomor-
phism classes of rational functions of degree n in general position with n
ordered simple poles. Then another Hurwitz space MHnU in MH0,n[1n], con-
sisting of all isomorphism classes of those with critical values, all of which are
contained in U , is a complete metric space with another normalized Hurwitz
metric

dMH,U(If1 , If2) = inf
ϕ

log K(ϕ),

where the infimum is taken over all quasiconformal maps ϕ of Ĉ preserving
the order of poles and satisfying f1 = ψ ◦ f2 ◦ ϕ−1 with quasiconformal self-
maps ψ of Ĉ which satisfy ψ(U) = U and fix points ±1 and ∞.

Theorem 2.2 ([6]) Bn − Γ can be identified with MHnU .

3 The synthetic Teichmüller spaces

To recover Bn from Bn −Γ, we need, for instance, to compactify the marked
Hurwitz spaces MH0,n[1n].

Remark The Hurwitz spaces of a rational function can be compactified
naturally. See [3] and [8]. We call these compactifications as the DENT
compactification. But they have the singularities in general. And the bound-
ary part of Bn − Γ corresponding to Γ in the DENT compactification of the
marked Hurwitz space MH0,n[1n] may be different from Γ.

Definition 3.1 Let f = fa,b correspond to a,b ∈ Bn. Then the full defor-
mation set FD(f) of f is the set of all meromorphic functions g on C such
that there are quasiconformal self-maps ϕ of C which fix 0 and 1, and satisfy
the qc-L∞ condition:

Df (g; ϕ) = ∥f − g ◦ ϕ∥∞
(

= sup
C

|f − g ◦ ϕ|
)

< ∞.

For every pair of functions f1 and f2 in FD(f), we set

d(f1, f2) = inf
(
log K(ϕ1 ◦ ϕ−1

2 ) + ∥f1 ◦ ϕ1 − f2 ◦ ϕ2∥∞
)
,
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where the infimum is taken over all quasiconformal maps ϕ1 and ϕ2 of C
which fix 0 and 1, and satisfy the qc-L∞ conditions Df (fj; ϕj) < ∞. This d
is actually a distance, and FD(f) equipped with this distance is a complete
metric space. We call the distance d defined above the synthetic Teichmüller
distance on FD(f). The space FD(f) equipped with this synthetic Te-
ichmüller distance is called the full synthetic deformation space of f and is
denoted as FSD(f).

Remark The synthetic deformation space is firstly defined for an entire
functions. See [9]. The results for structurally finite entire functions such as
in [9] can be formulated and proved also for structurally finite meromorphic
functions.

Theorem 3.1 For every f = fa,b with (a,b) ∈ Bn, FSD(f) is the set
Ratn[1n] consisting of all rational functions of degree n with simple poles
which include ∞.

Proof. First, it is easy to see that every g ∈ Ratn[1n] belongs to FSD(f).
On the other hand, let g be a meromorphic function belonging to FSD(f).

Take a quasiconformal map ϕ of C such that Df (g; ϕ) < +∞. Then

lim
z→∞

g(z) = ∞,

i.e., g has a pole at ∞, and hence is a rational function.
Next for a sufficiently small ϵ > 0, take discs

Dk = {|z − bk| < ϵ} (k = 1, · · · , n − 1)

Dn = {|z| > 1/ϵ} ∪ {∞}.

Here we may assume that f(Dk) is disjoint from

{|z| ≤ 2Df (g; ϕ)},

and that the winding number of the image f(Ck) around 0 is −1 for every
k = 1, · · · , n, where Ck is the boundary of Dk. Then the assumption implies
that g(ϕ(Dk)) is disjoint from {|z| ≤ Df (g; ϕ)} and that the winding number
of g(ϕ(Ck)) around 0 is −1 for every k = 1, · · · , n. Thus ϕ(Dk) contains no
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zeros and a single simple pole for every k, which implies that the degree of g
is n.

Now for our purpose, we consider the marked full synthetic deformation
space MFSD(f) of a given f = fa,b with (a,b) ∈ Bn, by keeping the order
of simple poles as before, which is again a complete metric space.

Corollary 1 MFSD(f) is the set MRatn[1n] of all rational functions of
degree n with ordered simple poles which include ∞, and hence is independent
of the choice of f .

The coefficient body Bn is a subset of MFSD(f), and the relative topology
on Bn is the same as the relative topology induced from that of (C∗)n−1 ×
F0,n−1C.
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