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1 The coefficient body

We say that a bounded domain D in C is an n-ply connected non-degenerate
planar domain if the boundary of D in C consists of n simple closed curves.
Bell proposed in [1] a family of simple such domains, and we have shown in
[4] that every non-degenerate n-ply connected planar domain with n > 1 is
mapped biholomorphically onto a domain W,y proposed by Bell, which is

defined by
- 1}

with suitable complex vectors a = (a1, a9, -+ ,a,-1) and b = (by, ba, -+ , by_1).
We call such a domain W, , a Bell representation of W. (Also see [5].)
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Definition 1.1 Let B,, be the locus in C?*"~? consisting of all points (a, b)
such that the corresponding domains W, are non-degenerate n-ply con-
nected planar domains. We call this locus B,, the coefficient body of degree
n.

Also we set

B:z = {(CLl?"' 7an—17b) | (a%v"' 7a2—1ab) € Bn}a

n

and call it the modified coefficient body (of degree n).

It is obvious that B,, and B are contained in the product space (C*)"~! x
Fy,,-1C, where

F()m_l(c = {(21, e ,Zn—l) - (Cn_l | Zj 7é 2k lf ] 7é k’}
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is the configuration space of n — 1 points in C. And B} is a 2" !-sheeted
smooth holomorphic covering space of B,,.

In the sequel, we assume that n > 2, since By and B} are explicitly
known. Note that B is circular, i.e. for every point (a,b) € B* and every
0 € R, e¥(a,b) € B:. Also for every point (a,b) € B¥ and every 0 < r < 1,
r(a,b) € Bf.

Theorem 1.1 ([6]) The modified coefficient body B is a circular domain
homeomorphic to B, and B,, has the same homotopy type as that of (C*)" 1 x
FO,n—lc-

Remark The fundamental group of Fp,_1C is called the pure braid group,
and its structure is well-known. See for instance [2].

2 The Hurwitz spaces
Now, rational functions can be parametrized also by the set of critical values.

Definition 2.1 Let I be the set of all points (a,b) of B,, such that the
corresponding rational function
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has either a non-simple critical point or has a pair of critical points whose
images by fap are the same. We call I' the collision locus of B,,.

Then for every point (a, b) in B,, —T', the rational function fa, has 2n—2
critical values, which we denote by

Sa,b = {041, T 7042n—2}-

This set can be considered as a point in the unordered configuration space
By 2,,—2C, the quotient space of £ 2,—2C by the symmetric group. Actually,
we know that S, is a point of the unordered configuration space By a,—2U
of 2n — 2 points on the unit disc U. Hence we can define the projection

ms:B, - — BO,anZU

by setting mg(a,b) = Sap. We have the following theorem about the projec-
tion mg.



Theorem 2.1 ([6]) The projection wg gives a (2n — 2)! n™3-sheeted proper
holomorphic covering of By on—2U by B, —T' for every n > 2.

We can see this theorem by regarding B,, — I' as a Hurwitz space. First
we intruduce a conceptually natural kind of such spaces.

Let f; and f> be rational functions. We say that f; and f, determine
the same covering structure if there are Mdbius transformations v and  of
C such that fo = ho fiogt. We denote by C; the covering structure
determined by f, and call the set of all covering structures determined by
rational functions g which are quasiconformally equivalent to f the prime
Hurwitz space of f, which is denoted by H#(f). Here we say that f and g
are quasiconformally equivalent if there are quasiconformal self-maps ¢ and
¥ of C such that g =1 o foep L.

We introduce the prime Hurwitz distance dy+ on H# (f) by setting

dH#(Cf1va2) - lgf log K(QD),

where the infimum is taken over all quasiconformal maps ¢ of C which satisfy
Yo fyop !t = f; with suitable quasiconformal maps 1 of C.

Proposition 2.1 dy+ is actually a distance and complete on H#(f).

Proof.  If dy#(Cy,,Cy,) = 0, then there are sequences {1} and {¢,} of
quasiconformal maps of C fixing 0, 1,00 such that i, o fo 0 ¢, € Cy, for
every n, and K(y,) = K(1,) tend to 1 as n tend to oco. Then ¥, and ¢,
converge to Mobius transformations v and 9, respectively, which shows that
dg# is actually a distance.

Similarly, let {Cy,} be a Cauchy sequence with respect to dgy#. Then
by a standard argument and taking subsequences if necessary, we can find
sequences {1, } and {¢,} of quasiconformal maps of C fixing 0,1, 00 such
that v, o f1 o @t € C;, for every n, and quasiconformal maps ¢ and ¢ of
C, such that fo = ¥ o f1 0 ¢! is a rational function and K (g, 0p™t) and
K (¢, o971 tend to 1 as n tend to co. This implies that Cy, converges to
Cy., with respect to dy#, which shows completeness. ]

But a finer equivalence relation is often considered.



Definition 2.2 We say that rational functions f; and f; determine the same
1somorphism class if there is a Mobius transformation v such that fo = fi107.
We call the set of all isomorphism classes Z, of rational functions g which
are quasiconformally equivalent to f the Hurwitz space of f, and denote it

by H(f).

Here, we distinguish the value oo and assume that 1(00) = oo for every
quasiconformal map 1) appeared in quasiconformal equivalence relation g =

Yofop

Example 1 The set Hy ,[n] of genus 0 and degree n with type (n), consisting
of all isomorphism classes of polynomials of degree n in general position, is
the Hurwitz space H(f) for any such an f.

The set Hp,[1"] of genus 0 and degree n with type 1" = (1,---,1),
consisting of all isomorphism classes of rational functions of degree n in
general position with n simple poles, is the Hurwitz space H(f) for any such

an f.

Remark The coefficient representation for H(f) is not faithful in general.
Also see [10].

We can define the normalized Hurwitz distance dg on H(f) by setting

dH(IfUIfz) = lgf log K(S0)>

where the infimum is taken over all quasiconformal maps ¢ of C satisfying
fi = 1o fy 0! with quasiconformal maps 1 of C normalized as follows:
Let n be the degree of f. Prescribe 2n + 1 distinct points in C including oo
and assume that each 1 fixes three of them including oo.

Then similarly as in the proof of the previous proposition, we have

Proposition 2.2 dy is actually a distance and complete on H(f).

Remark Historically, the Hurwitz space of a rational function f is defined
algebraically. Natanzon showed that such Hurwitz spaces are the same as
the set Top(f) of all isomorphism classes of rational functions g which are
topologically equivalent to f, i.e. there are self-homeomorphisms ¢ and 1 of
C such that 1(c0) = 0o and g = o fo =t (cf. [7]).
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Finally we consider the marked Hurwitz space M Hy,[1"] of all isomor-
phism classes of rational functions of degree n in general position with n
ordered simple poles. Then another Hurwitz space M H,,U in M H, ,[1"], con-
sisting of all isomorphism classes of those with critical values, all of which are
contained in U, is a complete metric space with another normalized Hurwitz
metric

dunv(Zy,Ly,) = igf log K (),

where the infimum is taken over all quasiconformal maps ¢ of C preserving
the order of poles and satistying f1 =1 o fy 0 o~ ! with quasiconformal self-
maps ¢ of C which satisfy ¢)(U) = U and fix points +1 and oc.

Theorem 2.2 ([6]) B,, — I' can be identified with M H,U .

3 The synthetic Teichmiiller spaces

To recover B,, from B,, — ', we need, for instance, to compactify the marked
Hurwitz spaces M Hy ,[1"].

Remark The Hurwitz spaces of a rational function can be compactified
naturally. See [3] and [8]. We call these compactifications as the DENT
compactification. But they have the singularities in general. And the bound-
ary part of B, — I' corresponding to I' in the DENT compactification of the
marked Hurwitz space M Hy ,[1"] may be different from I'.

Definition 3.1 Let f = f,p correspond to a,b € B,,. Then the full defor-
mation set FD(f) of f is the set of all meromorphic functions g on C such
that there are quasiconformal self-maps ¢ of C which fix 0 and 1, and satisfy
the qc-L*>° condition:

Dy(g:0) = |If — g0 ol (z o - gos@!) < 0.

For every pair of functions f; and fy in FD(f), we set

d(f1, f2) = inf (log K(p1095") 4+ || fro w1 — f2 0 ¢2ll)



where the infimum is taken over all quasiconformal maps ¢; and ¢y of C
which fix 0 and 1, and satisfy the qc-L> conditions D¢(f;;¢;) < co. This d
is actually a distance, and F'D(f) equipped with this distance is a complete
metric space. We call the distance d defined above the synthetic Teichmailler
distance on FD(f). The space FD(f) equipped with this synthetic Te-
ichmiiller distance is called the full synthetic deformation space of f and is

denoted as F'SD(f).

Remark The synthetic deformation space is firstly defined for an entire
functions. See [9]. The results for structurally finite entire functions such as
in [9] can be formulated and proved also for structurally finite meromorphic
functions.

Theorem 3.1 For every f = fap with (a,b) € B,,, FSD(f) is the set
Rat,[1"] consisting of all rational functions of degree m with simple poles
which include co.

Proof. First, it is easy to see that every g € Rat,[1"] belongs to F.SD(f).
On the other hand, let g be a meromorphic function belonging to F'SD(f).
Take a quasiconformal map ¢ of C such that D¢(g;¢) < +o00. Then

lim ¢(z) = oo,

Z—00

i.e., g has a pole at co, and hence is a rational function.
Next for a sufficiently small € > 0, take discs

Dy ={lz —bi| <€} (k=1,---,n—1)

D,, ={]z] > 1/e} U {o0c}.
Here we may assume that f(Dy) is disjoint from

{lz] < 2D¢(g: )}

and that the winding number of the image f(C%) around 0 is —1 for every
k=1,---,n, where C}, is the boundary of D;. Then the assumption implies
that g(¢(Dy)) is disjoint from {|z| < Ds(g;¢)} and that the winding number
of g(p(Cy)) around 0 is —1 for every k = 1,--- ,n. Thus ¢(Dy) contains no



zeros and a single simple pole for every k, which implies that the degree of g
is n. [ ]

Now for our purpose, we consider the marked full synthetic deformation
space MFSD(f) of a given f = fap with (a,b) € B,,, by keeping the order
of simple poles as before, which is again a complete metric space.

Corollary 1 MFSD(f) is the set M Rat,[1"] of all rational functions of
degree n with ordered simple poles which include oo, and hence is independent
of the choice of f.

The coefficient body B, is a subset of MFSD(f), and the relative topology

on B, is the same as the relative topology induced from that of (C*)"~1 x
FO,n—IC'
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