
THE COEFFICIENT BODY OF BELL REPRESENTATIONS
OF FINITELY CONNECTED PLANAR DOMAINS

MOONJA JEONG AND MASAHIKO TANIGUCHI

Abstract. In this note, we determine the homotopy type of the coefficient
body of Bell representations of non-degenerate n-connected planar domains

with n ≥ 3. Also, by considering the isomorphism classes of rational functions,
we get the precise number of those corresponding to Bell representations wth

the same set of critical values. Further, the case of those with the same set of
critical points is discussed.

1. Introduction

In this paper, a non-degenerate n-connected planar domain is a subdomain Ω of
the Riemann sphere Ĉ such that Ĉ−Ω consists of exactly n connected components
each of which contains more than one point. We also assume that n ≥ 2.

Then we know that every such Ω has a canonical representation as in the follow-
ing theorem, which is called a Bell representation of it.

Theorem 1.1 ([6]). Every non-degenerate n-connected planar domain with n ≥ 2
is mapped biholomorphically onto a domain Wa,b defined by{

z ∈ C |
∣∣∣∣∣z +

n−1∑
k=1

ak

z − bk

∣∣∣∣∣ < 1

}
with suitable complex vectors a = (a1, a2, · · · , an−1) and b = (b1, b2, · · · , bn−1).

This theorem is considered as a natural generalization of the classical Riemann
mapping theorem for simply connected planar domains. Importance of such rep-
resentations consists in such a fact that every domain Wa,b has algebraic kernel
functions. To be precise, the function

fa,b(z) = z +
n−1∑
k=1

ak

z − bk

is a proper holomorphic mapping from Wa,b onto the unit disc U which is algebraic.
Hence Bell’s result in [1] implies the following

Proposition 1.2. Every non-degenerate n-connected planar domain is biholomor-
phic to a domain with algebraic Bergman kernel and algebraic Szegő kernel.
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Here it is important to know the locus of the complex vectors (a,b) which
correspond to non-degenerate n-connected planar domains.

Definition 1.3. For every n ≥ 2, let Bn in C2n−2 be the set of all complex vectors

(a,b) = (a1, a2, · · · , an−1, b1, b2, · · · , bn−1)

in C2n−2 such that the corresponding domains

Wa,b =

{
z ∈ C |

∣∣∣∣∣z +
n−1∑
k=1

ak

z − bk

∣∣∣∣∣ < 1

}
are non-degenerate n-connected planar domains.

We call Bn the coefficient body for non-degenerate n-connected canonical do-
mains.

In this note, we will investigate the geometric structure of Bn.

2. A modified representation

To clarify the structure of the coefficient body, it is more convenient to consider
the following modification. In the sequel, we assume that n > 2, since B2 and B∗

2

are explicitly known (cf. [7]).

Definition 2.1. We set

B∗
n = {(a1, · · · , an−1, b) | (a2

1, · · · , a2
n−1, b) ∈ Bn},

and call it the modified coefficient body.

Clearly, B∗
n is contained in

(C∗)n−1 × F0,n−1C,

where

F0,n−1C = {(z1, · · · , zn−1) ∈ C
n−1 | zj 6= zk if j 6= k}.

Also it is invariant under the symmetry

Sk : (a1, · · · , ak, · · · , an−1, b) 7→ (a1, · · · ,−ak, · · · , an−1, b)

of C2n−2 for every k. And Bn can be identified with the quotient space of B∗
n by

the action of the group G =< S1, · · · , Sn−1 > generated by these symmetries. Thus
B∗

n is 2n−1 sheeted holomorphic covering of Bn with the covering transformation
group G.

Next, note that B∗
n is circular in the following sense.

Proposition 2.2. For every (a,b) ∈ B∗
n and every θ ∈ R, eiθ(a,b) ∈ B∗

n.

Proof. If (a,b) ∈ B∗
n, then letting

ga,b(z) = z +
n−1∑
k=1

a2
k

z − bk
,

W ∗
a,b = {z ∈ C | |ga,b(z)| < 1}
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is a non-degenerate n-connected domain. Hence

W ∗
eiθa,eiθb =

{
z ∈ C |

∣∣∣∣∣z +
n−1∑
k=1

(eiθak)2

z − eiθbk

∣∣∣∣∣ < 1

}
= {z ∈ C | |eiθga,b(e−iθz)| < 1} = eiθW ∗

a,b,

which is biholomorphic to W ∗
a,b, is a non-degenerate n-connected planar domain.

Another important property is ”star-shapedness” of B∗
n.

Proposition 2.3. For every (a,b) ∈ B∗
n and every 0 < r ≤ 1, r(a,b) ∈ B∗

n.

Proof. Let (a,b) ∈ B∗
n, and ga,b(z) be as in the previous proof. And for every

0 < r < 1, set

W r
a,b = {|ga,b(z)| < 1/r}.

It contains W ∗
a,b. And for every connected component F of the preimage g−1

a,b(Er)
of Er = {w ∈ C||w| ≥ 1/r}, ga,b(z) gives a homeomorphic map of F onto Er. Since
Er contains more than a point, so does each F . Hence W r

a,b is also a non-degenerate
n-connected domain.

Since rW r
a,b is biholomorphic to W r

a,b, rW r
a,b is also non-degenerate n-connected

domain. Furthermore, since

rga,b(z/r) = z +
n−1∑
k=1

(rak)2

z − rbk
= gra,rb(z),

W ∗
ra,rb = rW r

a,b is a non-degenerate n-connected domain and therefore r(a,b) ∈
B∗

n.

We now have the following property of B∗
n and Bn.

Theorem 2.4. B∗
n and hence Bn are domains and have the same homotopy type

as that of

(S1)n−1 × F0,n−1C.

Corollary 2.5. The modified coefficient body B∗
n is a circular domain homeomor-

phic to Bn.

Remark 2.6. The fundamental group of F0,n−1C is called the pure braid group, and
its structure is well-known. See for instance [3].

The above theorem follows from the following two lemmas.

Lemma 2.7. The coefficient body Bn is the set of all (a,b) such that

f ′
a,b(z) = 0

has 2n − 2 solutions c1, · · · , c2n−2 counted with multiplicities such that

|fa,b(cj)| < 1

for every j. The set B∗
n is characterized in the same way.

In particular, Bn and B∗
n are open subsets of C

2n−2.
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Proof. fa,b(z) has exactly 2n − 2 finite critical points c1, · · · , c2n−2, i.e. zeros of
f ′
a,b(z), counted with multiplicities, and (a,b) belongs to Bn, i.e.

{z ∈ C | |fa,b(z)| < 1}
is a non-degenerate n-connected domain if and only if, for every connected compo-
nent F of the preimage

f−1
a,b(E)

of E = {w ∈ C | |w| ≥ 1}, fa,b(z) gives a homeomorphic map of F onto E. Hence
we have the first assertion. The case of B∗

n is similar.
Next, since cj varies continuously with respect to (a,b), Bn and B∗

n are open
subsets of C2n−2.

Next set

ρ(b) = min
j 6=k

|bj − bk|.

And for a sufficiently small ε > 0 with ε ≤ 1/(6n), we set

Bε
n = {(a,b) ∈ C

2n−2 | ρ(b) > 0, |bk| ≤ 1/2, 0 < |ak| ≤ ε
√

ρ(b), 1 ≤ k ≤ n − 1}.
Note that ρ(b) ≤ 1.

Lemma 2.8. B∗
n has the same homotopy type as that of Bε

n.

Proof. First we show that

Bε
n ⊂ B∗

n

Suppose that (a,b) ∈ Bε
n. If we set

Ck = {z ∈ C | |bk − z| = ερ(b)}
then z ∈ Ck implies that |z| ≤ 2

3 , and

|bj − z| ≥ (1 − ε)ρ(b) > ρ(b)/2

for every j 6= k, and hence

|ga,b(z)| ≤ |z| +
n−1∑
j=1

∣∣∣∣∣ a2
j

z − bj

∣∣∣∣∣
≤ 2

3
+

ε2ρ(b)
ερ(b)

+ (n − 2)
ε2ρ(b)
ρ(b)/2

=
2
3

+ (1 + (2n − 4))ε < 1.

On the other hand, if we set

C̃k = {|bk − z| = |a2
k|/2}
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then |a2
k|/2 < ε2ρ(b), and z ∈ C̃k implies that

|ga,b(z)| ≥ |a2
k|

|z − bk| − |z| −
∑
j 6=k

∣∣∣∣∣ a2
j

z − bj

∣∣∣∣∣
≥ 2 − 2

3
− (n − 2)

ε2ρ(b)
ρ(b)/2

= 2 − 2
3
− (2n − 4)ε2 > 1.

Thus

{z ∈ C | |ga,b(z)| = 1}
has a component in

{z ∈ C | |a2
k|/2 < |z − bk| < ερ(b)},

and W ∗
a,b is disjoint from {|z − bk| ≤ |a2

k|/2}, for every k, which implies that W ∗
a,b

is non-degenerate and n-connected.
Next for every (a0, b0) ∈ B∗

n with a0 = (a1,0, · · · , an,0) and b0 = (b1,0, · · · , bn,0),
let `a0,b0 be the ray

{(ra0, rb0) | 0 < r ≤ 1}.
Then by Proposition 2.3, `a0,b0 ⊂ B∗

n. Also since ρ(rb0) = rρ(b0), we conclude
that

|rak,0| = r|ak,0| = ε′
√

ρ(rb0),

where

ε′ =
√

r|ak,0|/
√

ρ(b0),

which in turn tends to 0 as r does.
Now, fix an ε > 0 with ε ≤ 1/(6n). Then, (ra0, rb0) ∈ Bε

n for every sufficiently
small r. Hence we can construct a deformation retraction

rε : B∗
n → Bε

n,

by mapping the point (a0, b0) to the nearest point in Bε
n along `a0,b0 . This retrac-

tion is clearly the identity on Bε
n, and we conclude the assertion.

Here we give typical examples of points in B3. Consider the case that

f(z) = f4a2,4a2,b,−b(z) = z +
4a2

z − b
+

4a2

z + b

with a, b ∈ C − {0}. Then Lemma 2.7 implies the following theorem.

Theorem 2.9. The complex vector (4a2, 4a2, b,−b) belongs to B3 if and only if

|b2 + 4a2 + 4a(a2 + b2)1/2| · |b2 − 2a2 + 2a(a2 + b2)1/2|2 < |b|4

where the same value of (a2 + b2)1/2 is taken in each term.

Proof. Since f ′(z) has 4 roots

(b2 + 4a2 + 4a(a2 + b2)1/2)1/2,
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Lemma 2.7 implies that (4a2, 4a2, b,−b) belongs to B3 if and only if

|b2 + 4a2 + 4a(a2 + b2)1/2|
∣∣∣∣12a2 + 4a(a2 + b2)1/2

4a2 + 4a(a2 + b2)1/2

∣∣∣∣2
= |b2 + 4a2 + 4a(a2 + b2)1/2|

∣∣∣∣(3a + (a2 + b2)1/2)(−a + (a2 + b2)1/2)
b2

∣∣∣∣2
= |b2 + 4a2 + 4a(a2 + b2)1/2|

∣∣∣∣b2 − 2a2 + 2a(a2 + b2)1/2)
b2

∣∣∣∣2 < 1.

Example 2.10. Let a = 3/40 and b = 1/10. Since a and b satisfy the inequality
in Theorem 2.9, (4a2, 4a2, b,−b) belongs to B3. In fact,

{±
√

7
10

, ±
√

2
20

i}
is the set of critical points of f4a2,4a2,b,−b and |f4a2,4a2,b,−b| < 1 at each critical
point.

3. Parametrization as the Hurwitz space

Sometimes, holomorphic functions are parametrized by the set of critical points,
or that of the critical values, i.e. the images of critical points. Here we consider
the parametrization using the critical values. Such a parametrization is usually
considered for those functions in general position. In the sequel, we assume that
n > 2.

Definition 3.1. Let Γ be the set of all points (a,b) of Bn such that the corre-
sponding rational function fa,b has a non-simple critical point or has a pair of
critical points whose images are the same. We call Γ the collision locus.

Then for every point (a,b) in Bn−Γ, the rational function fa,b has 2n−2 simple
critical values. We denote the set of simple critical values of fa,b by

Sa,b = {α1, · · · , α2n−2},
where, letting {cj}2n−2

j=1 be the set of the simple critical points of fa,b, αj = fa,b(cj)
for every j. This set can be considered as a point in the unordered configuration
space B0,2n−2C, i.e. the quotient space of F0,2n−2C by the symmetric group S2n−2.
Moreover by Lemma 2.7, we see that Sa,b is actually a point of the unordered
configuration space B0,2n−2U for the unit disc U (cf. [3]).

Thus we can define the projection

πS : Bn − Γ → B0,2n−2U

by setting

πS(a,b) = Sa,b.

We have the following theorem about the projection πS .

Theorem 3.2. The projection πS is a

(2n − 2)! nn−3

-sheeted proper holomorphic covering of B0,2n−2U for every n > 2.
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Remark 3.3. The number
(2n − 2)! nn−3

n!
is called a Hurwitz number. See, for instance [5].

First recall that, for every point (a,b) ∈ Bn−Γ, the critical points c1, · · · , c2n−2

of fa,b are the solutions of the algebraic equation
n−1∏
j=1

(z − bj)2
(

1 −
n−1∑
k=1

ak

(z − bk)2

)
= 0.

Hence cj moves holomorphically with respect to (a,b). Since so does the image αj

of cj for each j = 1, · · · , 2n− 2, the map πS is holomorphic.
Next we show by the following two lemmas that, for every point S in B0,2n−2U ,

π−1
S (S) consists of (2n − 2)! nn−3 points.

Definition 3.4. The marked Hurwitz space MH0,n(1, · · · , 1) of genus 0 and degree
n with type (1, · · · , 1) and with the ordered poles is the set of all isomorphism classes
of rational functions in general position (i.e. with simple critical values) of degree
n such that poles are simple and ordered. Here we say that two such rational
functions f, g are isomorphic if there is a Möbius transformation A such that

f = g ◦ A

and A maps poles of f to those of g keeping the order. (Cf. [8].)

Lemma 3.5. Bn − Γ can be identified with the subset MHnU of marked Hurwitz
space MH0,n(1, · · · , 1), consisting of all isomorphism classes of rational functions
whose critical values are in U , by the mapping ι which maps (a,b) to the isomor-
phism class of fa,b.

Proof. By Lemma 2.7, every f = fa,b with (a,b) ∈ Bn − Γ determines a point in
MHnU . Here we always assume that the order of poles is b1, · · · , bn−1,∞.

Next suppose that (a′, b′) is also in Bn − Γ. If g = fa′,b′ is in the isomorphism
class of f , then there is a Möbius transformation A such that

f = g ◦ A

and since A maps poles of f to those of g keeping the order, A fixes ∞ and hence
is affine, which we write as A(z) = pz + q. Then

z +
n−1∑
k=1

ak

z − bk
= pz + q +

n−1∑
k=1

a′
k

A(z) − b′k
.

Hence A should be the identity map. This implies that

(a,b) = (a′, b′),

and hence ι is injective.
Finally, for every point P in MHnU , take a representative (a rational function)

f in this class. Then the poles of f are simple and ordered. By applying precom-
position of a suitable Möbius transformation which sends ∞ to a pole if necessary,
we may assume that f has the form

f(z) = az + b +
n−1∑
k=1

ak

z − bk
.
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Again by another precomposition of an affine transformation, we may assume that
a = 1, b = 0, i.e. f = fa,b with some (a,b) in Bn − Γ. Thus ι : Bn − Γ → MHnU
is surjective.

Now, fix a point S = {αj}2n−2
j=1 in B0,2n−2U . And fix a set of mutually disjoint

cuts (simple smooth arcs) `j from αj to a mutually distinct boundary point ωj of
U for every j. Here we assume that ω1, · · · , ω2n−2 are located with this order (with
respect to the counter-clockwise direction) on the boundary ∂U of U .

Lemma 3.6. The number of points in π−1
S (S) of S by πS is always

(2n − 2)! nn−3.

Proof. For every point (a,b) in π−1
S (S), fa,b gives a representative of the point

ι((a,b)) in MHnU over S. In other words, fa,b gives an n-sheeted branched
holomorphic covering of Ĉ by Ĉ with critical values S and ordered simple poles
b1, · · · , bn−1,∞.

Recall that f = fa,b also gives the branched covering of U by Wa,b. This covering
can be reconstructed as follows: Set D = U −∪2n−2

j=1 `j . Then the preimage f−1(D)
consists of n domains Dk, the order of which is naturally defined as follows: Let γk

be the component of f−1
a,b(∂U) surrounding the k-th pole. Then Dk is the component

whose boundary contains the part of γk which is projected by fa,b onto the subarc
of ∂U from ω2n−2 to ω1 (which contains no ωj).

Let `k
j be the ”slit” on Dk over `j (i.e. the part of the boundary corresponding

to the preimage f−1(`j) on Dk) for every k and j. Then each `k
j is divided by some

critical point into two arcs, which can be considered as two sides of the ”slit” `k
j .

And for every j, there is a pair, say {Dk(j), Dk′(j)} such that sides of these ”slits”

are glued ”crosswise” along `
k(j)
j and `

k′(j)
j . (Here two sides of every other ”slit”

`k
j is glued trivially.) Hence we have a transposition σj = (k(j) k′(j)) of ordered n

sheets at `j when we move counter-clockwise along ∂U for each j. Since Wa,b has
exactly n boundary components,

σ2n−2 ◦ · · · ◦ σ1

should be the identical permutation. And apply all such gluings as above, we can
reconstruct the branched covering f : Wa,b → U .

Thus for every (a,b) in π−1
S (S) and with fixed cuts {`j}, we have an ordered

factorization of the identical permutation into 2n − 2 transpositions. And since
Wa,b is connected, such transpositions generate the full symmetric group Sn.

Conversely, for every such an ordered factorization of the identical permutation,
we can construct an n-sheeted branched covering of Ĉ by itself, and hence also of U
by an n-connected domain W , having the set S as simple critical values. Then W
has n boundary components, and hence by the argument in the proof of the main
theorem in [6], we can find a point (a,b) in Bn−Γ such that Wa,b is biholomorphic
to W and fa,b belongs to the isomorphism class of the covering projection of the
above covering. In other words, (a,b) ∈ π−1

S (S). Also it is clear that different such
factorizations give different branched covering structures, and hence different (a,b)
in π−1

S (S) by Lemma 3.5.
On the other hand, it is known (cf. [5]) that the number of such (transitive

minimal) ordered factorizations of the identical permutation on {1, · · · , n} into
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transpositions is

(2n − 2)! nn−3,

which shows the assertion.

Finally, we have

Lemma 3.7. πS is locally biholomorphic, and evenly covered (i.e. for every point
S ∈ B0,2n−2U , there is a neighborhood V of S such that every component of π−1

S (V )
is biholomorphic to V ).

Proof. Fix a point S in B0,2n−2U and a point (a,b) in π−1
S (S) arbitrarily. Then

it is classically well-known (or can be shown by a standard arguments in the qua-
siconformal deformation theory) that we can find a neighborhood V of S and a
holomorphic function φ of V into Bn such that

φ(S) = (a,b)

and for every (a′, b′) in φ(V ), fa′,b′ gives the same factorization of the identical
permutation as fa,b does. Here if V is sufficiently small, we can consider the natural
bijection between S and the set S′ of critical values of fa′,b′ for every (a′, b′) ∈ φ(V ).
And we take as the ”slits” `′j for S′ the image of `j by a self-diffeomorphism of
U ∪ ∂U which is the identity outside mutually disjoint simply connected, relatively
compact, neighborhoods of each αj in U and induces the above bijection between
S and S′.

Then from the construction, πS ◦ φ is the identity. And since the number of
points in the preimage π−1

S (S) is a finite constant by above lemma, we conclude
that πS is locally biholomorphic, and also evenly covered.

Thus πS gives an unbranched (2n − 2)! nn−3-sheeted, holomorphic covering of
B0,2n−2U by Bn − Γ. In particular, it is proper, which completes the proof of
Theorem 3.2.

Example 3.8. In the case n = 3, such ordered factorizations are

{(p q), (p q), (p r), (p r)},

{(p q), (p r), (p r), (p q)},

{(p q), (p r), (r q), (p r)},

{(p q), (p r), (q p), (q r)},
where we can take any bijection of {p, q, r} to {1, 2, 3}. Hence we have 4! dif-
ferent ordered (transitive minimal) factorizations of the identical permutations on
{1, 2, 3}.

4. Parametrization by the critical points

We call the set of all points in (C∗)n−1 × F0,n−1C such that the corresponding
rational function fa,b has a non-simple critical point the non-simple locus, and we
denote it by ∆. Then ∆ ⊂ Γ, and for every point (a,b) in (C∗)n−1 ×F0,n−1C−∆,
we denote the set of simple critical points of fa,b by

Ca,b = {c1, · · · , c2n−2}.
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This set can be considered again as a point in the unordered configuration space
B0,2n−2C. And we can define a holomorphic map

πC : (C∗)n−1 × F0,n−1C − ∆ → B0,2n−2C

by setting

πC(a,b) = Ca,b.

Similarly as in the previous section, we can show the following

Theorem 4.1. For every point C in B0,2n−2C, there are at most

(2n − 2)!
n!

preimages of C by πC.

The number
(2n − 2)!
n! (n − 1)!

is called the n-th Catalan number. And the theorem can be shown by noting the
following result.

Lemma 4.2 ([4], [9]). For every fixed C in B0,2n−2C, there are

(2n − 2)!
n! (n − 1)!

classes of rational functions of degree n which have C as the set of critical points.

Here two rational functions f and g are in the same class if there is a Möbius
transformation A such that

f = A ◦ g.

But in this case, a class as above contains a rational function of the form

f(z) = z +
n−1∑
j=1

aj

z − bj

only if the image of ∞ is different from all critical values. And the image πC(Bn−∆)
seems to be misterious.

Example 4.3. If we take

{±( 4
√

3/
√

2)(1 ± i)}
as the set of critical points (with n = 3), we have 2 = 4!/(3! 2!) different classes
determined by

f1 = f−1,−1,1,−1 (= f−1,−1,−1,1)

and

f2 = f1,1,i,−i (= f1,1,−i,i).

But since |f1(( 4
√

3/
√

2)(1 + i))| > 1 and |f2(( 4
√

3/
√

2)(1 + i))| > 1 for instance, all
of (−1,−1, 1,−1), (−1,−1,−1, 1), (1, 1, i,−i), and (1, 1,−i, i) do not belong to B3.

On the other hand, if we take

{±
√

7
10

, ±
√

2
20

i}
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as the set of critical points (with n = 3), we have 2 different classes determined by

f1 = fa,a,b,−b (= fa,a,−b,b) with a =
9

400
, b =

1
10

and

f2 = fa′,a′,b′,−b′ (= fa′,a′,−b′,b′) with a′ =
1
48

, b′ =
1
10

√
7
6
.

We already mentioned that |f1| < 1 at each critical point in Example 2.10. Also
|f2| < 1 at each critical point and hence all of (a, a, b,−b), (a, a,−b, b), (a′, a′, b′,−b′),
and (a′, a′,−b′, b′) belong to B3.

Next, the rational function

f(z) = z +
6z − 4

(z − 1)2
,

has {1,−1, 2 +
√

3, 2−√
3} as critical points. Here since f(∞) = f(1), the class of

f can contain no rational function fa,b with (a,b) belonging even to (C∗)2×F0,2C.

Note that there is a natural smooth map of Bn to the (reduced) moduli space
M0,0,n of a non-degenerate n-connected planar domain, which is a real 3n − 6
dimensional variety if n > 2. (Recall that two points (a,b) and (a′, b′) are mapped
to the same point of M0,0,n if there is a biholomorphic map F of Wa,b onto Wa′,b′ .)

Hence the preimages of a generic point of M0,0,n, which we have called a leaf of
the coefficient body Bn in [7], has a positive real dimension. And Theorem 3.2 and
Theorem 4.1 imply the following

Corollary 4.4. There is a non-trivial real parameter family F of Bell representa-
tions in a single leaf such that F is disjoint from Γ, and that πC and πS are injective
on F.
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