ON UNIQUENESS OF OBSTACLE PROBLEM ON FINITE RIEMANN
SURFACE

RIE SASAI

ABSTRACT. In [1], R. Fehlmann and F. P. Gardiner studied an extremal problem for a
topologically finite Riemann surface and established a slit mapping theorem. In this arti-
cle, we give a condition for non-uniqueness of such slit mappings, by using a deformation
of a Riemann surface.

1. INTRODUCTION

Let S be a Riemann surface of finite analytic type. Let (S,, ) be a pair of a Riemann
surface S, of the same type as S and an isomorphism ¢ of the fundamental group m(S5)
of S onto m1(S,). We say that two pairs (S,,, ¢1) and (S,,, t2) are equivalent if there exists
a conformal map u of S, onto S,, such that

(u)s 0Ly = Lo

The family of such equivalence classes is said to be the Teichmiiller space of S and denoted
by T(S5).

Let S be a finite bordered Riemann surface with border I'. In other words, the border
I" consists of finitely many mutually disjoint simple closed curves, and the double S¢ of
S with respect to the border I is of finite analytic type. Note that the border I' may be
empty. In that case, the double S¢ will be interpreted as S itself. Let A(S) be the set of
integrable holomorphic quadratic differentials ¢ on S with the property that ¢ = p(2)dz?
is real along the border I' (cf. [2]). Every ¢ € A(S) extends to a symmetric holomorphic
quadratic differential ¢4 on S9.

Let G(S9) be the family of simple closed curves on the double S9, which are homotopic
neither to a point of S nor to a puncture of S9. Let &[SY] be the set of free homotopy
classes of elements of &(S9). For ¢ € A(S) and v € &(SY), we denote the height of

with respect to ¢ by
height,(2) = [ flm(v/57(z)dz)
Y

and the height of the homotopy class [y] by
height a[7] = iIﬁlf height q(3),
where the infimum is taken over all closed curves 3 € &(S9) freely homotopic to 7 in S9.
Now we state the obstacle problem in the sense of Fehlmann and Gardiner [1]. They

thought of a “simply connected” compact subset with finitely many connected components
as an obstacle. We will consider a more general set as an obstacle.
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Definition 1.1. We say that E is allowable if E is a compact subset of the interior S°
of S such that S°\ F is connected and E is contractible in S.

We further say that E'is an allowable slit with respect to ¢ € A(S)\{0} if E is allowable
and if each component of E is a horizontal arc of ¢ or the union of a finite number of
horizontal arcs and critical points of ¢.

We remark that a compact subset £ C S° is contractible if and only if there is a
topological closed disk in S which contains E in its interior (see [4, Lemma 2.3]). Let E
be an allowable subset of S. Set E4 = F U j(E), where j : S — S is the canonical anti-
conformal involution. Let §(S, E) be the family of pairs (g,S,), where ¢ is a conformal
map of S\ £ into another Riemann surface S, of the same type as S in such a way that
g maps the border I' onto the border of S, and the same applies to the punctures. For
every (g,S,) € (5, F), g extends to a conformal map g4 of S4\ E4 into Sg symmetrically.
Then (g, S,) € §(S, E) induces an isomorphism ¢, of the fundamental group m;(S9) of S¢
onto m1(SY) (cf. [4, Lemma 2.5] ). We denote by [Sg,,] the Teichmiiller (equivalence)
class of (S, 1) in T(S9).

It is known (cf. [3]) that, for every (f,S;) € §(S, E) and ¢ € A(S) \ {0}, there exists
the unique holomorphic quadratic differential ¢, € A(Sf) \ {0} such that

height, [7] = height a(c; '[y]) for every [y] € S[SY].

Fehlmann and Gardiner [1] posed an obstacle problem for (S, E, @) which asks the exis-
tence of (f,Sy) € §(S, F) maximizing the quantity

T
Sy

in §(S, F), and showed the following result.

Theorem 1.2 (Fehlmann-Gardiner). Suppose that S is a finite bordered Riemann sur-
face, and that ¢ € A(S)\ {0}. Let E be an allowable subset of S with finitely many
components. Then there exists an element (g,S,) € §(S, E) such that M, attains the
supremum
M, = sup M;y.
(f,87)€3(S,E)

Moreover, for this point (g,S,) € §(S,E), E; = S;\ g(S\ E) is an allowable slit with
respect to .

The point (g,S,) € §(S, E) in Theorem 1.2 is called ezstremal for (S, E, ), and the
associated differential ¢, is called the extremal differential.

Fehlmann and Gardiner also asserted in the paper [1] that the extremal pair (g, S,) is
unique in the sense that, if (u,S,) € §(S, E) is also extremal for (S, E, ¢), then gou™!
extends to a conformal map of S,, onto S;. The uniqueness, however, does not necessarily
hold in their sense.

We show in this note the following theorem which gives a condition for extremal, and
hence extremal slit mappings, not to be unique.

Definition 1.3. Let E be an allowable slit in a finite bordered Riemann surface S with
respect to a holomorphic quadratic differential p € A(S) \ {0}. We will call py € E a
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refolding point of order m for (S, E, ) if py is a zero of ¢ of order m and if E contains
two horizontal arcs ¢; and /5 with common end point py such that the angle formed by
them at py is greater than 27 /(m + 2).

Theorem 1.4. Let R be a finite bordered Riemann surface, and ¢ € A(R)\ {0}. Let Ey
be an allowable slit of R with respect to . Suppose that E has a refolding point py of
order m > 3 for (R, Ey,v). Then, there exist (4, R) € §(R, Ey) and ¢ € A(R)\ {0} such
that

(i) Ej = R\ @(R\ Ey) is an allowable slit of R with respect to 1),

(i) height za[v] = heighta (15" [7]) for every [7] € S[RY], and

(iii) [RY, 13] # [RY,1d] in T(RY).
Corollary 1.5. Suppose that S is a finite bordered Riemann surface and that ¢ € A(S)\
{0}. Let E be an allowable subset of S, and (g,5,) € §(S, E) be extremal for (S, E, p).
If the allowable slit E, of S, with respect to the extremal differential ¢, has a refolding

point of order at least three, then there exists another extremal element for (S, E, ) which
induces a point in T(S?) different from [SS, 1.

Proof. Take the triple (S,, E,, ¢,) as the triple (R, Ey, 1) in Theorem 1.4. Then we obtain
(@, R) € §(Sy, Ey), and ¢ € A(R) \ {0} satisfying (i) (ii) (iii) in the theorem. Then from
[1] we see that (i) and (ii) implies that the point (@ o g, R) € §(S, E) is extremal for
(S, E,p). Moreover we can see, by (iii), [RY, taog] # [S5, tg] in T(S9). Thus we have the
assertion. O

Remark In the proof, we will actually construct a continuous family of extremal elements
(i, Ry) € F(R, E) for the same obstacle problem for (R, Ey,1) in such a way that the
marked Riemann surface 7, = [RY, 15,] varies continuously in T'(RY) \ {[R4,id]} and that
7 approaches [RY,id] as t — 0. Since the Teichmiiller modular group acts on T(RY)
discontinuously, this implies that the Riemann surface R? is not conformally equivalent
to R for sufficiently small ¢ > 0.

In [4], the auther showed a uniqueness result in the weaker form: Let (g,S,) and
(u, S,) be both extremal for (S, E, ). Then the extremal differentials ¢, and ¢, satisfy
the relation ¢, = (¢, 0o w)(w')? on u(S \ E), where w = gou™" .

2. EXAMPLE

In this section we give an example of the triple (S, E, ¢) which satisfies the assumptions
of Corollary 1.5.
First make three copies My, My, M3 of the rectangle

M={:=x+iyeC||z| <2yl <1},

and let z; be the coordinate corresponding to z on each M;. Next on each M, identify
the two pairs of parallel sides under the translations

zj — z; +4, 2j — zj + 2u.

Then we obtain three copies T}, Ts, T3 of a torus 7. The quadratic differential dz? on M
induces a holomorphic quadatic differential ¢y on T
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Cut Tj along the segment
Ij={z == +iy; | -1 < a; <0,y; =0},

and glue them cyclically. More precisely, we paste the upper edge I, of the slit I, to the
lower edge I, of the slit I, the upper edge I, of the slit I, to the lower edge I; of the
slit I3, and the upper edge I of the slit I3 to the lower edge I, of the slit I;. Then we
obtain a compact Riemann surface S of genus three.

Now let II be the natural projection of .S onto the torus 7', and ¢ be the pull-back of
o by II. Finally, let E be the subset of S consisting of ¢; and ¢35, where ¢; is the arc on
T; corresponding to {z | 0 <z <1,y = 0}.

Now we consider the obstacle problem for (S, E, ¢). Then the set E is an allowable slit
of S with respect to ¢. Hence we know that the identy mapping of S gives an extremal
slit map associated with the extremal problem for this triple. Moreover, we can easily see
that {py} = IT7'(0) C S consists of the refolding point for (S, E, ¢).

Thus the assumptions in Corollary 1.5 are satisfied and, as a consequence, the points
in T(SY) which are induced by the extremals for (S, E, ¢) are not uniquely determined.

3. PROOF OF THEOREM 1.4

Assume that a component J of E, contains a refolding point py of 1) of order m > 3
and horizontal arcs /; and ¢, with common end point py and that the angle formed by ¢,

and /5 at pg is
2k 2<k<m+2 ‘
m—+ 2 - T 2

Note that the arcs /1, /5 are segments on the real axis with endpoint at the origin with
respect to the natural parameter

Cyp = /z: Vi (2)dz,

where z is a local chart near py and 2o = z(py).

We take closed subarcs x; C £;(j = 1,2) with the same t-length such that p, is an
endpoint of each x; and that ¢ has no zeros on «; \ {po}. Let p; be the other endpoint of
r; for each j. Also set K = k1 U Ko.

Now, cut R along k; and ky. For each j, let n;“ and r;, respectively, be the right-side
and the left-side edges of the slit x;, with respect to the orientation which corresponds
to the move along the slit from py to p;. Assume that x; and k3, £ and K, form the
angles

2km d 2r(m+2 — k)

an
m+ 2 m+ 2

at po, respectively.

Paste k; and k3 so that points having the same absolute value with respect to ¢y
are identified. In the same way, paste x| and k,. Let K be the union of the pasted
segments. Then we obtain a new finite bordered Riemann surface R and the natural
conformal embedding & : R\ K — R. The pair (&, R) is an element of the family
§(R,K) C §(R, Ey).
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Moreover, from the construction we can extend (%~')"t naturally to a holomorphic

quadratic differential ¢ on R, and E; = R\ (R \ Ey) is an allowable slit of R with
respect to 1,/;

Lemma 3.1.
height ja[7] = height (')
for every [7] € S[RY].

Proof. We say that a simple closed curve § on RY is a ¢9-polygon, if 3 is the union of

finitely many horizontal arcs and vertical arcs of ¢4, Note that for every [3] € S[RI]

height za[7] = inf height i (),
g

where the infimum is taken over all ¢%-polygons /3 freely homotopic to 7 in R9.

We can now add horizontal segments contained in K to the pre-image (i9) ' (3) of such

a Y9-polygon 3 so that the resulting ¢%-polygon 3 is a closed curve in the class v A
Then, by construction, we obtain

height .« (3) = height ;. (3).
Hence we conclude that
heighta (1, [7]) < heightya(3) = height ()
for every ¢d-polygon [ freely homotopic to 7, which in turn implies that
height a (5 '[7]) < heighta[7]

for every [§] € G[RY].
On the other hand, we can similarly see as above that

height ja (ta[v]) < heightya[v]
for every [y] € &[RY]. Thus we have proved the assertion. O

By Lemma 3.1, we see that the holomorphic quadratic differential ¢ € A(R9)\ {0}
satisfies the condition (ii) in Theorem 1.4. Moreover, by definition, Ej; is an allowable slit

of R with respect to ¢, and
(poa) (@)’ =4 on R\ Ey. ()
Lemma 3.2. [RY,13] # [RY,id] in T(RY).

Proof. Suppose that (R3] = [RY,id] in T(RY). Then there exists a conformal map
f: RY — RY with (f), = 13 which is symmetric in the border T.
Take any [y] € S[RY]. Then Lemma 3.1 gives

height ja[f(7)] = heighta[y].
Since height a, ;)2 [7] = heightja[f(7)], we obtain
helghtd;dof(f/)Q [’Y] = helghtd)d [’7]
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for every [y] € &[RY]. Hence the heights mapping theorem [2] implies that
(z;d o F)(f)* =% on RY. (xx)
In particular, the map f sends the zeros of 19 to those of ¢4 while keeping multiplicities.
Now from the construction, the zero py of orders m > 3 breaks into two zeros ¢; and g»
of 14 of orders k — 2 and m — k, respectively, with 2 < k < (m+2)/2. Also the endpoints
p1 of k1 and p, of Ky gather into a zero ¢ of 14 on R of order 2.

Set K = R\ @(R\ K). Then the zeros §,¢§, and g, of ¥ on K have orders less than m.
Hence we see that

f(pg) S R \ k
Since the conformal embedding % maps R\ K onto R\ K, (zld)_1 o f(po) is well defined
and (@) "' o f(po) ¢ K. In particular,

(@) " o f(po) # po.

Next assume that, for a positive integer n,

(@) 0 )" (po) # () © /) (20)
for every k with 0 < k < n—1. Then, fo((@%) ' o f)*(py) & K, for fo (@)™ o f)"(po) is
a zero of 1 of order m. Hence, similarly as above, (@)™ o f)"*(po) ¢ K. In particular,

(@)™ o £)"*(po) # po.

Also by the assumption,
-1

(@) "o f)"Hpo) # (@) o f)*(po)

for every k with 1 < k < n.
Thus by induction, we conclude that, for every positive integer n,

(@) "o f)"(po) # (@) " o ) (po)

for every k with 0 < k < n—1. Therefore ¢ has infinitely many zeros, which is impossible.
So we have shown that

[RY, 03] # [RY,id]
in T(RY). ]

Theorem 1.3 follows immediately from Lemma 3.2.
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