
ON UNIQUENESS OF OBSTACLE PROBLEM ON FINITE RIEMANN

SURFACE

RIE SASAI

Abstract. In [1], R. Fehlmann and F. P. Gardiner studied an extremal problem for a
topologically �nite Riemann surface and established a slit mapping theorem. In this arti-
cle, we give a condition for non-uniqueness of such slit mappings, by using a deformation
of a Riemann surface.

1. Introduction

Let S be a Riemann surface of �nite analytic type. Let (S�; �) be a pair of a Riemann
surface S� of the same type as S and an isomorphism � of the fundamental group �1(S)
of S onto �1(S�). We say that two pairs (S�1; �1) and (S�2; �2) are equivalent if there exists
a conformal map u of S�1 onto S�2 such that

(u)� Æ �1 = �2:

The family of such equivalence classes is said to be the Teichm�uller space of S and denoted
by T (S).
Let S be a �nite bordered Riemann surface with border �. In other words, the border

� consists of �nitely many mutually disjoint simple closed curves, and the double Sd of
S with respect to the border � is of �nite analytic type. Note that the border � may be
empty. In that case, the double Sd will be interpreted as S itself. Let A(S) be the set of
integrable holomorphic quadratic di�erentials ' on S with the property that ' = '(z)dz2

is real along the border � (cf. [2]). Every ' 2 A(S) extends to a symmetric holomorphic
quadratic di�erential 'd on Sd.
Let S(Sd) be the family of simple closed curves on the double Sd, which are homotopic

neither to a point of Sd nor to a puncture of Sd. Let S[Sd] be the set of free homotopy
classes of elements of S(Sd). For ' 2 A(S) and  2 S(Sd), we denote the height of 
with respect to 'd by

height'd() =

Z


jIm(
p
'd(z)dz)j

and the height of the homotopy class [] by

height'd[] = inf
�
height'd(�);

where the in�mum is taken over all closed curves � 2 S(Sd) freely homotopic to  in Sd.
Now we state the obstacle problem in the sense of Fehlmann and Gardiner [1]. They

thought of a \simply connected" compact subset with �nitely many connected components
as an obstacle. We will consider a more general set as an obstacle.
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De�nition 1.1. We say that E is allowable if E is a compact subset of the interior SÆ

of S such that SÆ n E is connected and E is contractible in S.
We further say that E is an allowable slit with respect to ' 2 A(S)nf0g if E is allowable

and if each component of E is a horizontal arc of ' or the union of a �nite number of
horizontal arcs and critical points of '.

We remark that a compact subset E � SÆ is contractible if and only if there is a
topological closed disk in S which contains E in its interior (see [4, Lemma 2.3]). Let E
be an allowable subset of S. Set Ed = E [ j(E), where j : Sd ! Sd is the canonical anti-
conformal involution. Let F(S;E) be the family of pairs (g; Sg), where g is a conformal
map of S nE into another Riemann surface Sg of the same type as S in such a way that
g maps the border � onto the border of Sg and the same applies to the punctures. For
every (g; Sg) 2 F(S;E), g extends to a conformal map gd of SdnEd into Sd

g symmetrically.

Then (g; Sg) 2 F(S;E) induces an isomorphism �g of the fundamental group �1(S
d) of Sd

onto �1(S
d
g ) (cf. [4, Lemma 2.5] ). We denote by [Sd

g ; �g] the Teichm�uller (equivalence)

class of (Sd
g ; �g) in T (S

d).
It is known (cf. [3]) that, for every (f; Sf) 2 F(S;E) and ' 2 A(S) n f0g, there exists

the unique holomorphic quadratic di�erential 'f 2 A(Sf ) n f0g such that

height'd
f
[] = height'd(�

�1
f []) for every [] 2 S[Sd

f ]:

Fehlmann and Gardiner [1] posed an obstacle problem for (S;E; ') which asks the exis-
tence of (f; Sf) 2 F(S;E) maximizing the quantity

Mf = k'fkL1(Sf ) =

ZZ
Sf

j'f j

in F(S;E), and showed the following result.

Theorem 1.2 (Fehlmann-Gardiner). Suppose that S is a �nite bordered Riemann sur-
face, and that ' 2 A(S) n f0g. Let E be an allowable subset of S with �nitely many
components. Then there exists an element (g; Sg) 2 F(S;E) such that Mg attains the
supremum

Mg = sup
(f;Sf )2F(S;E)

Mf :

Moreover, for this point (g; Sg) 2 F(S;E), Eg = Sg n g(S n E) is an allowable slit with
respect to 'g.

The point (g; Sg) 2 F(S;E) in Theorem 1.2 is called extremal for (S;E; '), and the
associated di�erential 'g is called the extremal di�erential.
Fehlmann and Gardiner also asserted in the paper [1] that the extremal pair (g; Sg) is

unique in the sense that, if (u; Su) 2 F(S;E) is also extremal for (S;E; '), then g Æ u�1

extends to a conformal map of Su onto Sg. The uniqueness, however, does not necessarily
hold in their sense.
We show in this note the following theorem which gives a condition for extremal, and

hence extremal slit mappings, not to be unique.

De�nition 1.3. Let E be an allowable slit in a �nite bordered Riemann surface S with
respect to a holomorphic quadratic di�erential ' 2 A(S) n f0g. We will call p0 2 E a
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refolding point of order m for (S;E; ') if p0 is a zero of ' of order m and if E contains
two horizontal arcs `1 and `2 with common end point p0 such that the angle formed by
them at p0 is greater than 2�=(m+ 2).

Theorem 1.4. Let R be a �nite bordered Riemann surface, and  2 A(R) n f0g. Let E 
be an allowable slit of R with respect to  . Suppose that E has a refolding point p0 of
order m � 3 for (R;E ;  ). Then, there exist (~u; ~R) 2 F(R;E ) and ~ 2 A( ~R) nf0g such
that

(i) E ~ = ~R n ~u(R n E ) is an allowable slit of ~R with respect to ~ ,

(ii) height ~ d[] = height d(�
�1
~u []) for every [] 2 S[ ~Rd], and

(iii) [ ~Rd; �~u] 6= [Rd; id] in T (Rd).

Corollary 1.5. Suppose that S is a �nite bordered Riemann surface and that ' 2 A(S)n
f0g. Let E be an allowable subset of S, and (g; Sg) 2 F(S;E) be extremal for (S;E; ').
If the allowable slit Eg of Sg with respect to the extremal di�erential 'g has a refolding
point of order at least three, then there exists another extremal element for (S;E; ') which
induces a point in T (Sd) di�erent from [Sd

g ; �g]:

Proof. Take the triple (Sg; Eg; 'g) as the triple (R;E ;  ) in Theorem 1.4. Then we obtain

(~u; ~R) 2 F(Sg; Eg), and ~ 2 A( ~R) n f0g satisfying (i) (ii) (iii) in the theorem. Then from

[1] we see that (i) and (ii) implies that the point (~u Æ g; ~R) 2 F(S;E) is extremal for
(S;E; '). Moreover we can see, by (iii), [ ~Rd; �~uÆg] 6= [Sd

g ; �g] in T (S
d). Thus we have the

assertion.

Remark In the proof, we will actually construct a continuous family of extremal elements
(~ut; ~Rt) 2 F(R;E ) for the same obstacle problem for (R;E ;  ) in such a way that the

marked Riemann surface �t = [ ~Rd
t ; �~ut] varies continuously in T (Rd) n f[Rd; id]g and that

�t approaches [Rd; id] as t ! 0. Since the Teichm�uller modular group acts on T (Rd)
discontinuously, this implies that the Riemann surface ~Rd

t is not conformally equivalent
to ~Rd for suÆciently small t > 0.

In [4], the auther showed a uniqueness result in the weaker form: Let (g; Sg) and

(u; Su) be both extremal for (S;E; '). Then the extremal di�erentials 'g and 'u satisfy

the relation 'u = ('g Æ w)(w
0)2 on u(S n E), where w = g Æ u�1 .

2. Example

In this section we give an example of the triple (S;E; ') which satis�es the assumptions
of Corollary 1.5.
First make three copies M1;M2;M3 of the rectangle

M = fz = x + iy 2 C j jxj � 2; jyj � 1g;

and let zj be the coordinate corresponding to z on each Mj. Next on each Mj, identify
the two pairs of parallel sides under the translations

zj ! zj + 4; zj ! zj + 2i:

Then we obtain three copies T1; T2; T3 of a torus T . The quadratic di�erential dz2 on M
induces a holomorphic quadatic di�erential '0 on T .
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Cut Tj along the segment

Ij = fzj = xj + iyj j �1 � xj � 0; yj = 0g;

and glue them cyclically. More precisely, we paste the upper edge I+1 of the slit I1 to the
lower edge I�2 of the slit I2, the upper edge I

+
2 of the slit I2 to the lower edge I�3 of the

slit I3, and the upper edge I+3 of the slit I3 to the lower edge I�1 of the slit I1. Then we
obtain a compact Riemann surface S of genus three.
Now let � be the natural projection of S onto the torus T , and ' be the pull-back of

'0 by �. Finally, let E be the subset of S consisting of `1 and `2, where `i is the arc on
Ti corresponding to fz j 0 � x � 1; y = 0g:
Now we consider the obstacle problem for (S;E; '). Then the set E is an allowable slit

of S with respect to '. Hence we know that the identy mapping of S gives an extremal
slit map associated with the extremal problem for this triple. Moreover, we can easily see
that fp0g = ��1(0) � S consists of the refolding point for (S;E; ').
Thus the assumptions in Corollary 1.5 are satis�ed and, as a consequence, the points

in T (Sd) which are induced by the extremals for (S;E; ') are not uniquely determined.

3. Proof of Theorem 1.4

Assume that a component J of E contains a refolding point p0 of  of order m � 3
and horizontal arcs `1 and `2 with common end point p0 and that the angle formed by `1
and `2 at p0 is

2k�

m + 2

�
2 � k �

m+ 2

2

�
:

Note that the arcs `1; `2 are segments on the real axis with endpoint at the origin with
respect to the natural parameter

� =

Z z

z0

p
 (z)dz;

where z is a local chart near p0 and z0 = z(p0).
We take closed subarcs �j � `j(j = 1; 2) with the same  -length such that p0 is an

endpoint of each �j and that  has no zeros on �j n fp0g. Let pj be the other endpoint of
�j for each j. Also set K = �1 [ �2.
Now, cut R along �1 and �2. For each j, let �

+
j and ��j , respectively, be the right-side

and the left-side edges of the slit �j, with respect to the orientation which corresponds
to the move along the slit from p0 to pj. Assume that ��1 and �+2 , �

+
1 and ��2 form the

angles

2k�

m+ 2
and

2�(m+ 2� k)

m+ 2
:

at p0, respectively.
Paste ��1 and �+2 so that points having the same absolute value with respect to � 

are identi�ed. In the same way, paste �+1 and ��2 . Let ~K be the union of the pasted
segments. Then we obtain a new �nite bordered Riemann surface ~R and the natural
conformal embedding ~u : R n K ! ~R. The pair (~u; ~R) is an element of the family
F(R;K) � F(R;E ).
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Moreover, from the construction we can extend (~u�1)
�
 naturally to a holomorphic

quadratic di�erential ~ on ~R, and E ~ = ~R n ~u(R n E ) is an allowable slit of ~R with

respect to ~ .

Lemma 3.1.

height ~ d [~] = height d(�
�1
~u [~])

for every [~] 2 S[ ~Rd].

Proof. We say that a simple closed curve ~� on ~Rd is a ~ d-polygon, if ~� is the union of
�nitely many horizontal arcs and vertical arcs of ~ d. Note that for every [~] 2 S[ ~Rd]

height ~ d [~] = inf
~�
height ~ d(

~�);

where the in�mum is taken over all ~ d-polygons ~� freely homotopic to ~ in ~Rd.

We can now add horizontal segments contained in K to the pre-image (~ud)
�1
( ~�) of such

a ~ d-polygon ~� so that the resulting  d-polygon � is a closed curve in the class ��1
~u [~].

Then, by construction, we obtain

height d(�) = height ~ d(
~�):

Hence we conclude that

height d(�
�1
~u [~]) � height d(�) = height ~ d(

~�)

for every ~ d-polygon ~� freely homotopic to ~, which in turn implies that

height d(�
�1
~u [~]) � height ~ d [~]

for every [~] 2 S[ ~Rd].
On the other hand, we can similarly see as above that

height ~ d(�~u[]) � height d[]

for every [] 2 S[Rd]. Thus we have proved the assertion.

By Lemma 3.1, we see that the holomorphic quadratic di�erential ~ d 2 A( ~Rd) n f0g
satis�es the condition (ii) in Theorem 1.4. Moreover, by de�nition, E ~ is an allowable slit

of ~R with respect to ~ , and

( ~ Æ ~u)(~u0)2 =  on R n E : (�)

Lemma 3.2. [ ~Rd; �~u] 6= [Rd; id] in T (Rd).

Proof. Suppose that [ ~Rd; �~u] = [Rd; id] in T (Rd). Then there exists a conformal map
f : Rd ! ~Rd with (f)� = �~u which is symmetric in the border �:
Take any [] 2 S[Rd]. Then Lemma 3.1 gives

height ~ d[f()] = height d[]:

Since height ~ dÆf(f 0)2 [] = height ~ d[f()], we obtain

height ~ dÆf(f 0)2 [] = height d[]
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for every [] 2 S[Rd]. Hence the heights mapping theorem [2] implies that

( ~ d Æ f)(f 0)2 =  d on Rd: (��)

In particular, the map f sends the zeros of  d to those of ~ d while keeping multiplicities.
Now from the construction, the zero p0 of orders m � 3 breaks into two zeros ~q1 and ~q2

of ~ d of orders k� 2 and m�k, respectively, with 2 � k � (m+2)=2. Also the endpoints
p1 of �1 and p2 of �2 gather into a zero ~q of ~ d on ~Rd of order 2.
Set ~K = ~R n ~u(R nK). Then the zeros ~q; ~q1 and ~q2 of ~ on ~K have orders less than m.

Hence we see that

f(p0) 2 ~R n ~K:

Since the conformal embedding ~u maps R nK onto ~R n ~K, (~ud)
�1
Æ f(p0) is well de�ned

and (~ud)
�1
Æ f(p0) =2 K. In particular,

(~ud)
�1
Æ f(p0) 6= p0:

Next assume that, for a positive integer n,

((~ud)
�1
Æ f)n(p0) 6= ((~ud)

�1
Æ f)k(p0)

for every k with 0 � k � n�1. Then, f Æ ((~ud)
�1
Æf)n(p0) =2 ~K, for f Æ ((~ud)

�1
Æf)n(p0) is

a zero of ~ of order m. Hence, similarly as above, ((~ud)
�1
Æ f)n+1(p0) =2 K. In particular,

((~ud)
�1
Æ f)n+1(p0) 6= p0:

Also by the assumption,

((~ud)
�1
Æ f)n+1(p0) 6= ((~ud)

�1
Æ f)k(p0)

for every k with 1 � k � n.
Thus by induction, we conclude that, for every positive integer n,

((~ud)
�1
Æ f)n(p0) 6= ((~ud)

�1
Æ f)k(p0)

for every k with 0 � k � n�1. Therefore  has in�nitely many zeros, which is impossible.
So we have shown that

[ ~Rd; �~u] 6= [Rd; id]

in T (Rd).

Theorem 1.3 follows immediately from Lemma 3.2.
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