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Abstract. In this note, we present a method of computing monodromies of projective
structures on a once-punctured torus or a four-times punctured sphere. This leads to an
algorithm numerically visualizing the shape of the Bers embedding of a one-dimensional
Teichm�uller space. As a by-product, the value of the accessary parameter of a four-
times punctured sphere will be calculated in a numerical way as well as generators of a
Fuchsian group uniformizing it. Finally, we observe the relation between the Schwarzian
di�erential equation and Heun's di�erential equation in this special case.

1. Introduction

The Teichm�uller space was, as its name tells us, invented by O. Teichm�uller around
1940. At the early stage, however, quasiconformal mappings had not been developed
enough, and therefore, his work was diÆcult to understand for most people. In the late
1950's, L. V. Ahlfors and L. Bers established a �rm foundation to the theory of quasi-
conformal mappings, which lead to understanding the Teichm�uller space well and further
development of it. Among their contributions, the idea of simultaneous uniformization
due to Bers enabled us to embed the Teichm�uller space of a Riemann surface as a bounded
domain in the normed vector space of holomorphic quadratic di�erentials on it. In the lat-
ter half of the last century, many authors have revealed a number of remarkable properties
of Teichm�uller spaces. Most of them, however, are concerned with the internal geometry
of the spaces. On the one hand, in connection with the deformation of Kleinian groups,
the boundary of the Bers embedding (so-called the Bers boundary) of a Teichm�uller space
has been investigated. In spite of much e�orts to this direction, the shape of the Bers
embedding is still mysterious at present because of its highly transcendental nature. At
least, the supporting evidence that the Bers boundary is fairly irregular has been reported
by, for instance, [20] and [36]. We also note that the Teichm�uller space of �nite dimen-
sion greater than one is not a symmetric domain. Actually, the analytic automorphism
group of it is the homomorphic image of the mapping class group on the surface under
the discontinuous action on the Teichm�uller space (Royden [32]). As Bers stated in his
survey [3], even one-dimensional Teichm�uller spaces are exciting one's curiosity enough.

Date: April 23, 2002.
1991 Mathematics Subject Classi�cation. Primary 30F60; Secondary 30F40, 34A20.
Key words and phrases. Teichm�uller space, Bers embedding, monodromy, pleating ray, accessary

parameter, bending coordinates, once-punctured torus .
The second named author was partially supported by the Ministry of Education, Grant-in-Aid for

Encouragement of Young Scientists, 9740056. Part of the present research was carried out during the
second named author's visit to the University of Helsinki under the exchange program of scientists between
the Academy of Finland and the JSPS. .

1



2 Y. KOMORI AND T. SUGAWA

The �rst attempt to compute a boundary point of a one-dimensional Teichm�ullder
space has been made by R. M. Porter [30] and L. Keen and et al [12], [11], where they
succeeded in drawing several real rays of trace functions ending at cusps in the case of the
once-punctured square torus. The present authors are wondering why nobody developed
their approach further despite the remarkable progress of computing technology in recent
years. We note here that in 1980's C. McMullen, D. Mumford and D. Wright obtained
computer pictures of the Maskit embedding of the Teichm�uller space of a once-punctured
torus. Since the Maskit embedding had been expected to resemble the Bers embedding
in shape, they made several conjectures on the Bers embedding (see, for instance, [23]).
Moreover, the Bers boundary of a one-dimensional Teichm�ullder space was asserted to be
a Jordan curve by C. McMullen around 1990. A proof for the assertion in the literature
has been given by Y. Minsky as a corollary of his complete description of the space of
discrete faithful representations of once-punctured torus groups [25].
Furthermore, using Minsky's Pivot Theorem, H. Miyachi [26] proved recently that each

cusp of the one-dimensional Teichm�uller space is really cusp-shaped, namely, to the end-
point of each rational pleating ray one can attach a subdomain like cardioid in the Bers
embedding.
On the other hand, B. Maskit [22] (see also [19]) discovered projective structures such

that the monodromies are quasi-Fuchsian groups but the developing maps are not univa-
lent (for details of the terminology here, see the next section). Those exotic projective
structures have recently been studied intensively by many authors (see, e.g., [24] , [34]).
However, the con�guration of components of the interior of exotic projective structures
on a surface is still far from being clear.
In this note, we will give a practical method of computing the monodromy of a given

projective structure by solving a linear ordinary di�erential equation of the second order
which is associated with the Schwarzian di�erential equation. Employing the bending
coordinates, which were developed by L. Keen and C. Series (see, e.g., [14]) and by
C. McMullen [24], we explain how we can generate a picture of the Bers embedding with
suÆcient precision.
Our method can also be applied to obtain the whole picture of exotic components of

the discreteness locus of projective structures if available is an algorithm of determining
the discreteness of a given M�obius group generated by two elements with parabolic com-
mutator. This will be a main subject of our forthcoming paper [16] with M. Wada and
Y. Yamashita.
This note is organized as follows. Section 2 is devoted to basic de�nitions of the Te-

ichm�uller spaces and related notions. In Section 3, we summarize known facts about com-
mensurable Fuchsian groups with given Fuchsian group � uniformizing a once-punctured
torus. The explicit description of coverings between corresponding quotient surfaces will
be helpful to transfer the computation on the once-punctured torus to that on the com-
mensurable four-times punctured sphere in Section 4. In this way, we can avoid to use
elliptic functions in actual computations. This method can also be used to obtain exact
values of the Poincar�e density of the once-punctured square torus [35]. Section 5 gives
an enumeration of free homotopy classes of (non-peripheral, unoriented) simple closed
curves on the topological once-punctured torus by using the notion of Farey neighbours.
In Section 6 we describe a natural \polar coordinates," called the bending coordinates,
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of the Teichm�uller space of a once-punctured torus by following C. McMullen [24]. Our
main theorem states that some sort of radial ray, called a rational pleating ray, can be
described as a real locus of the entire function representing the trace of monodromy of
a simple closed curve corresponding to the ray. Using results in the preceding sections,
we can draw numerically all rational pleating rays in a recursive way. As a by-product,
we can compute the value of the accessory parameter and a standard generator pair of a
Fuchsian group uniformizing a given once-punctured torus as well. In the �nal section,
we investigate the relation between the Schwarzian di�erential equation in the four-times
punctured sphere and Heun's di�erential equation. We will observe that a simple change
of indeterminants transforms the former one to the latter. Thus the monodromy can be
computed also by solving Heun's di�erential equation instead of the Schwarzian di�eren-
tial equation.
Acknowledgements. The authors should like to express deep thanks to Yoshitsugu Takei

and Shun Shimomura, who both pointed out the connection with Huen's di�erential
equation. They also wish to thank Caroline Series and Hideki Miyachi for enjoyable
conversations about Theorem 6.3 during the �rst author's stay at Warwick.

2. Basic definitions

Let � be a Fuchsian group acting on the unit disk D ; in other words, � is a discrete
subgroup (possibly with torsion elements) of the analytic automorphism group Aut(D )
of D : Note that Aut(D ) is M�obius conjugate to Aut(H ) �= PSL(2;R); where H denotes
the upper half plane fz 2 C ; Im z > 0g: We denote by Q(D ;�) the set of holomorphic
quadratic di�erentials '(�)d�2 for � on the unit disk, i.e., ' are holomorphic in D and
satisfy the functional equation ' Æ  � (0)2 = ' for each  2 �: (We often identify an
element '(�)d�2 in Q(D ;�) with the corresponding coeÆcient '(�):)
A quadratic di�erential '(�)d�2 2 Q(D ;�) is called bounded if the norm

k'kD = sup
�2D

(1� j�j2)2j'(�)j

is �nite. We denote by B2(D ;�) the complex Banach space consisting of all bounded
holomorphic quadratic di�erentials for � on D with the norm de�ned above.
It is well known that B2(D ;�) is �nite dimensional if and only if the Fuchsian group �

is co�nite, in other words, �nitely generated and of the �rst kind. If � is torsion-free and
uniformizes a Riemann surface X of �nite analytic type (g; n); where g is the genus of X
and n is the number of punctures of X with 2g�2+n > 0; then dimB2(D ;�) = 3g�3+n:
In particular, dimB2(D ;�) = 1 if and only if the signature (g; n) is equal to (1; 1) or (0; 4):
An element of B2(D ;�) is sometimes called a cusp form for a co�nite �: Each cusp form
admits at most a simple pole at a puncture or a branch point of the quotient Riemann
surface (or orbifold).
We now explain a well-known method enabling us to construct a locally univalent

meromorphic function on D for which the Schwarzian derivative coincides with the given
holomorphic quadratic di�erential. For a good account including the historical back-
ground, we refer the reader to [9, Chap. 10]. Let ' 2 Q(D ;�) be given. Then consider
the following linear homogeneous ordinary di�erential equation of the second order:

2�00 + '� = 0 on D :(2.1)
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Since D is simply connected, a unique solution � exists on D for the given initial data
�(0) = a and �0(0) = b: We denote by �1 and �2 the special solutions of (2.1) determined
by �1(0) = 0; �01(0) = 1 and �2(0) = 1; �02(0) = 0: Then the Wronskian �01�2 � �1�

0
2 is

identically 1: We note that the ratio f := �1=�2 has Taylor expansion in the form

f(�) = � + a3�
3 + � � �

near the origin. A simple calculation shows that the Schwarzian derivative Sf = (f 00=f 0)0�
(f 00=f 0)2=2 is equal to the given di�erential ': Hereafter, we denote by f' the meromorphic
function f = �1=�2 just described above and call it the (normalized) developing map of '
when we regard ' as a projective structure on the surface D =�:
Here we briey recall facts about the analytic automorphism group Aut(D ) of the unit

disk D : Let SU(1; 1) be the subgroup of SL(2; C ) consisting of all matrices U in the form�
u v
�v �u

�
with juj2 � jvj2 = 1: Then the canonical projection SU(1; 1) ! PSU(1; 1) =

SU(1; 1)=f�Ig gives the natural homomorphism P : SU(1; 1)! Aut(D ); in other words,
P (U)(z) = (uz+ v)=(�vz+ �u): It is well known that SU(1; 1) is conjugate with SL(2;R) in
SL(2; C ):
We de�ne the pullback U�

�1=2� of � under U by

U�
�1=2�(z) = (�vz + �u)�(P (U)(z)):

Here we remark that the function �vz + �u is a global branch of (P (U)0)�1=2:
A direct computation shows that U�

�1=2� satis�es di�erential equation (2.1) with P (U)
�
2' =

' Æ P (U) � (P (U)0)2 instead of ': In particular, when P (U) 2 �; we see that U�
�1=2�j is

again a solution of (2.1) for j = 1; 2; and hence, we can write

U�
�1=2�1 = a�1 + b�2(2.2)

U�
�1=2�2 = c�1 + d�2;

where a; b; c and d are constants, because �1 and �2 form a basis of the vector space of
solutions of (2.1). (The relations in (2.2) can be regarded as \additive lows" for the
solutions.) We note that we can deduce ad� bc = 1 from the fact that the Wronskian of
U�
�1=2�1; U

�
�1=2�2 is identically 1:

Let e� be the inverse image P�1(�) of � under the projection P:We now de�ne the map

~�' : e� ! SL(2; C ) by ~�'(~) =

�
a b
c d

�
; where a; b; c and d are the above constants for

U = ~ 2 e�: It is easy to see that ~�' is actually a group homomorphism for each ': By the
holomorphic dependence of solutions on the coeÆcients, the correspondence ' 7! ~�'(~)
is a holomorphic map from Q(D ;�) to SL(2; C ); where the space Q(D ;�) is endowed with
the Fr�echet space structure determined by the uniform convergence on compacta. Note
that �0 is nothing but the identity. Furthermore, for a ~ 2 e�; we set

Tr~(') = tr ~�'(~) = a + d:(2.3)

The trace function Tr~ is also holomorphic in ' and plays an important role in the present
investigation.
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Taking the ratio of relations (2.2), we obtain

f' Æ  = �'() Æ f'
on D ; where  = P (~) and �'() is the M�obius transformation induced by ~�'(~); i.e.,
(az+b)=(cz+d): The element �'() is well-de�ned because (az+b)=(cz+d) is independent

of the choice of ~ 2 P�1() � e�: Thus, the map �' : � ! PSL(2; C ) is also a group
homomorphism and will be called the monodromy homomorphism of � associated with
' 2 Q(D ;�):
By virtue of the following theorem, we can see that considering only the monodromy

homomorphism would lose nothing in investigation of deformations of �:

Theorem A. Let � be a co�nite Fuchsian group. For ';  2 B2(D ;�); the coincidence

�' = � on � implies ' =  :

This result traces back to Poincar�e for the case when � uniformizes a compact Riemann
surface. The generalization above is due to I. Kra [17].
The (Bers embedded) Teichm�uller space of a Fuchsian group � will be denoted by

T (�) and de�ned as the set of those holomorphic quadratic di�erentials ' 2 Q(D ;�) for

which the developing maps f' are univalent and admit quasiconformal extensions to bC
compatible with the action of �; where a quasiconformal extension F of f' is said to be
compatible with � if for each  2 � there exists a M�obius transformation 0 such that
F Æ  = 0 Æ F on bC :
Remark 2.1. For simplicity, we have adopted a slightly di�erent de�nition of the Te-
ichm�uller space from the usual one. Our space T (�) here means, in the standard def-
inition, the Teichm�uller space of the Fuchsian group acting on the exterior of the unit
disk, or, more intuitively, the Teichm�uller space of the mirror image of the surface D =�:
Therefore, the reader should refer with special care to another paper. For example, our
standard generator pair �0; �1 (see Section 3 below) should be replaced by �0

�1; �1:

When � is the trivial group 1; T (1) is called the universal Teichm�uller space. By
de�nition, we see that T (�1) � T (�2) if �1 � �2; in particular, the universal Teichm�uller
space contains all Teichm�uller spaces of Fuchsian groups.
The Kraus-Nehari theorem says that k'kD � 6 if f' is univalent. Hence T (�) is a

bounded subset of B2(D ;�): We also note that the Ahlfors-Weill theorem implies f' 2
B2(D ;�); k'kD < 2g � T (�): It is well known also that T (�) is a connected open subset
of B2(D ;�): For details, see, for instance, [10]. By the existence of a conformally natural
extension operator from quasisymmetric homeomorphisms of S1 to quasiconformal ones
of D (see Tukia [37] or Douady-Earle [4]), we can see that

T (�) = T (1) \B2(D ;�)(2.4)

and that T (�) is contractible.
More generally, we consider the set K(�) of those quadratic di�erentials ' 2 B2(D ;�)

for which the monodromy images �'(�) are discrete in PSL(2; C ): The following result is
due to H. Shiga [33].

Theorem B. The Bers embedded Teichm�uller space T (�) coincides with the connected

component of IntK(�) which contains the origin.
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Moreover, each element of IntK(�) is known to correspond to an isomorphism onto
a quasi-Fuchsian group (Shiga and Tanigawa [34]). Thus, the trace function Tr~ for a

hyperbolic element ~ 2 e� satis�es

Tr~(IntK(�)) � C n [�2; 2]:
By virtue of Theorem B, we would see the shape of the Bers embedding if we could

mark the grids contained in K(�) for suÆciently �ne mesh in the space B2(D ;�): This
approach is out of our scope here, however, it will be a basis of our forthcoming paper
[16] in the case when D =� is a once-punctured torus. It also has the advantage that one
can draw a picture (up to translation) even if one does not know about the value of the
accessary parameter (see Section 5). To do that, we need an algorithm determining the
discreteness of a given M�obius group. Such an algorithm, however, is available only for
the special case when the group is generated by two elements with parabolic commutator
at present.
Our method here will rely on the internal geometry of the Teichm�uller space, and hence,

it might be applicable to even higher dimensional cases.

3. Commensurability relations

All one-dimensional Teichm�uller spaces are mutually conformally equivalent because
they are all simply connected. In particular, the Teichm�uller space of a once-punctured
torus is biholomorphic to that of a four-times punctured sphere. There is, however, an
intrinsic relation between them as is described below.
Let � be a Fuchsian group uniformizing a once-punctured torus X: It is a basic fact

that � has free generators �0 and �1 with the properties: (i) both are hyperbolic; (ii) the
commutator [�0; �1] is parabolic; and (iii) the (signed) intersection number �0 � �1 equals
1: We call such (�0; �1) a standard generator pair of �:
If a standard generator pair is given, then there exists a unique complex number � with

Im � > 0 satisfying the following property: The quotient surface (C n fm + n� ;m;n 2
Zg)=L� = (C n L� )=L� ; where L� is the lattice group generated by 1 and � over Z; is
conformally equivalent to X in such a way that the curves t+(1+ �)=2 and t� +(1+ �)=2
in C parametrized by t 2 [0; 1] correspond to �0 and �1; respectively.
We call � the Teichm�uller parameter of the (marked) Fuchsian group � with standard

generator (�0; �1): This parameter � is known to give a global analytic coordinate of the
Teichm�uller space of � onto the upper half plane H (see [10]).
Now consider the four-times punctured torus Z given as the quotient (C n f(m +

n�)=2;m;n 2 Zg)=L� = (C n 1
2
L� )=L� : Then the mapping z 7! 2z induces a four-sheeted

(unbranched) covering Z ! X: Note that the covering group of Z ! X is isomorphic to
Z2 � Z2:
On the other hand, the conformal involution z 7! �z induces a 2-sheeted (unbranched)

covering Z ! Y; where Y is the four-times punctured sphere described as bC nfe0; e1; e2; e3g;
where e0 = }(0) = 1; e1 = }(1=2); e2 = }(�=2); e3 = }((1 + �)=2); in terms of the
Weierstrass }-function with period lattice L� : We note that e1 + e2 + e3 = 0:
Since the covering Z ! X is Galois, we obtain a natural homomorphism from � to

Aut(Z):We denote by �0 the kernel of this homomorphism. Then �0 is a Fuchsian group
uniformizing Z: By the above remark, we note that �=�0

�= Z2 � Z2:
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The composition of the universal covering D ! D =�0
�= Z and the above projection

Z ! Y is a universal covering of the four-times punctured sphere Y; whose covering group
will be denoted by �0: Then �0 is an extension of �0 such that �0=�0

�= Z2:
Similarly, by the involution z 7! �z of C n fm + n� ;m;n 2 Zg; we obtain a 2-sheeted

covering X ! W; where W is a Riemann orbifold of signature (0; 2; 2; 2;1); in fact, W
is realized as the complex plane with rami�cation of order 2 at the three points e1; e2 and
e3 via the covering map [z] 7! }(z): This orbifold appears also as the quotient space of Y
by the action of the group G(e0; e1; e2; e3) described below.

Let a0; a1; a2 and a3 be distinct points in the Riemann sphere bC and set 
 = bC n
fa0; a1; a2; a3g: Unless these points are in a special position, we cannot permute these in
an arbitrary way by a M�obius transformation. The domain 
; however, has a special kind
of symmetry always.
For example, there exists a unique M�obius transformation A1 swapping a0 and a1 and

swapping a2 and a3: In fact, we take the M�obius transformation A sending a0; a1; a2
to a1; a0; a3; respectively. Since A swaps a0 and a1; the transformation A must be an
involution, i.e., A2 = id: Therefore we conclude A(a3) = A�1(a3) = a2:
Similarly, we can take M�obius transformations A2 and A3 such that A2(a0; a1; a2; a3) =

(a2; a3; a0; a1); A3(a0; a1; a2; a3) = (a3; a2; a1; a0):
We now have the group, denoted by G(a0; a1; a2; a3); formed by the elements id; A1; A2

and A3; which acts on 
 as analytic automorphisms and is isomorphic to Z2 � Z2: The
quotient space 
=G(a0; a1; a2; a3) is a Riemann orbifold of signature (0; 2; 2; 2;1): We
remark that the �xed points of A1 can be expressed by

a0a1 � a2a3 �
p
(a0 � a2)(a1 � a2)(a0 � a3)(a1 � a3)

a0 + a1 � a2 � a3
:

We now return to our case. The covering map R : Y ! Y=G(e0; e1; e2; e3) = W can be
expressed explicitly by

R(z) =
z4 � 2(e1e2 + e2e3 + e3e1)z

2 + 8e1e2e3z + (e1e2 + e2e3 + e3e1)
2

4(z � e1)(z � e2)(z � e3)

=
z4 + g2z

2=2 + 2g3z + (g2=4)
2

4z3 � g2z � g3
;

where g2 and g3 are well-known constants determined by the lattice L� : This rational
function comes from the additive low in the theory of elliptic functions, i.e., }(2z) =
R(}(z)); and was used to construct an example of complex dynamics such that the Julia

set equals the whole sphere bC by Latt�es in 1918 (see x4.3 of [2]).
Let �1 be the covering group of the universal cover D ! X ! W of W: We note that

�0 C � C �1;�0 C �0 C �1;�0 = � \ �0; and that �1 = h�;�0i:
In particular, B2(D ;�1) � B2(D ;�) and B2(D ;�1) � B2(D ;�

0); and these are all one-
dimensional vector spaces, hence all equal. Now relation (2.4) leads to the following
result.

Lemma 3.1. The Bers embedded one-dimensional Teichm�uller spaces of the commensu-

rable Fuchsian groups �;�0 and �1 all coincide:

T (�) = T (�1) = T (�0):
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Therefore, to consider the Bers embedding of the Teichm�uller space of a once-punctured
torus is equivalent to do that of the corresponding four-times punctured sphere. The latter
sometimes has an advantage making things simple in the calculation as we shall see in
the next section.

4. The monodromy on a four-times punctured sphere

Let � be the Fuchsian group uniformizing a once-punctured torus and �0 be the Fuchsian
group commensurable with � uniformizing the corresponding four-times punctured sphere.
Although the space B2(D ;�) = B2(D ;�

0) is complex one-dimensional, it seems quite hard
to calculate numerically the value of functions in this space. On the other hand, an element
of B2(D ;�) can be regarded as a holomorphic quadratic di�erential on the quotient space
D =�; which is more tractable than its lift to D : Indeed, R. M. Porter [30] and L. Keen
[11] employed this idea and succeeded in computing the real rays of trace functions for
several words of special type. In authors' opinion, appearance of elliptic functions in their
methods has made the computation somewhat diÆcult.
So, the authors would like to propose an idea using quadratic di�erentials on the four-

times punctured sphere Y = D =�0 instead of those on the once-punctured torus X = D =�:
Our formulation will need only rational functions, so the involved computation will be
much simpler than the other methods. In this section, we will provide a method of
computing the monodromy homomorphism �' : � ! PSL(2; C ) up to conjugation by
PSL(2; C ); where the conjugation does not depend on ': In fact, our construction gives
global holomorphic mappings �0; �1 : B2(D ;�) ! SL(2; C ) such that the homomorphism

~�0' : e�! SL(2; C ) determined by ~�0'(
~�0) = �0(') and ~�0'(

~�1) = �1(') induces the same
homomorphism � ! PSL(2; C ) as �' up to PSL(2; C )-conjugacy (Theorem 4.3). Here
~�r is a representative of �r in SU(1; 1) for r = 0;1: We remark also that the argument
developed below can also be applied to the case of n-times punctured spheres, n > 4:

Recall the relation D =�0 �= C nfe1 ; e2; e3g: For simplicity, by the map z 7! (z�e2)=(e1�
e2); we transform the domain to the other one C nf0; 1; �g; denoted still by the same letter
Y as before, where � = (e3� e2)=(e1� e2) = �(�) is known to be a holomorphic universal
covering of the domain C n f0; 1g and usually called an elliptic modular function (cf. [1,
Chapter 7]).
We denote by p the universal covering D ! Y �= D =�0 constructed above and set

z0 = p(0): Then we can associate the isomorphism, denoted by Æ; from �0 onto �1(Y; z0)
with p by assigning the homotopy class of the image p([0; (0)]) to a given  2 �0:
Let B2(Y ) denote the Banach space of bounded holomorphic quadratic di�erentials on

Y; where a holomorphic quadratic di�erential  (z)dz2 on Y is said to be bounded if the
norm

k kY := sup
z2Y

j (z)j�Y (z)�2

is �nite, where �Y (z)jdzj denotes the complete hyperbolic metric on Y of the constant
negative curvature �4; i.e., 1=(1� j�j2) = �Y (p(�))jp0(�)j:We remark that a holomorphic
quadratic di�erential  satis�es k kY < 1 if and only if  has at most simple pole at
each puncture of Y:
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By de�nition, the spaces B2(D ;�
0) and B2(Y ) are isometrically isomorphic via the

pull-back p�2 : B2(Y ) ! B2(D ;�
0) de�ned by p�2 =  Æ p � (p0)2: In particular, B2(Y ) is

one-dimensional, too.
On the other hand, the rational function

 0(z) =
1

z(z � 1)(z � �)
(4.1)

belongs to B2(Y ); thus,  0 forms a basis of the vector space B2(Y ):

Now we consider the developing map f' : D ! bC ; where ' is the pull-back of a given
 2 B2(Y ) under the projection p: Then the (local) branch g of the function f' Æp�1 near
the basepoint z0 = p(0) with g(z0) = 0 satis�es the relation

p�2 
�
= ' = Sf'

�
= p�2(Sg) + Sp:(4.2)

The function g has the expansion

g(z) =
1

p0(0)
(z � z0)� p00(0)

2p0(0)3
(z � z0)

2 + � � �(4.3)

around the point z0: We should remember the fact that the �rst two coeÆcients do not
depend on the particular choice of ' = p�2 : Here the relation Sp = �p�2(Sp�1) holds
and Sp�1 depends only on the domain Y; in fact, this is independent of the choice of
the branch and the covering map p because of the invariance property of the Schwarzian
derivative: SAÆf = Sf for any M�obius transformation A: This holomorphic quadratic dif-
ferential Sp�1(z)dz

2 will be written by �Y (z)dz
2 in this article and called the uniformizing

connection of Y (see [18]).
By the behaviour of the universal covering near the puncture, the quadratic di�erential

�Y (z)dz
2 is known to have a pole of the second order at every puncture of Y with residue

1=2: By this observation, we have the following.

Lemma 4.1 ([8, Theorem 3.1], [18, (2.3.1)]). The uniformizing connection �Y (z)dz
2 of

Y has the form

�Y (z) =
1

2z2(z � 1)2
+

1

2(z � �)2
+

c(�)

z(z � 1)(z � �)
;

where c(�) is a constant determined by �:

The constant c(�) was called the accessory parameter by Poincar�e and is known to
be diÆcult to compute in general. I. Kra [18] showed that c(�) is real analytic but not
complex analytic in �:
If a M�obius transformation A leaves Y invariant, we have �Y = A�

2�Y ; in particular, �Y
is invariant under the action of the group G(0; 1;1; �): By this invariance, when Y has
a good symmetry, the value c(�) can be computed explicitly. For example, we easily see
that c(�) is real for a real � and that c(�) is pure imaginary if Re� = 1=2: In particular,
we see that c(1=2) = 0: The following examples can be found in [8].

Example 4.1. c(�1) = 1: Note that �(�1 + i) = �1:
Example 4.2. c((1 +

p
3i)=2) = �i=p3: Note that �((1 +p3i)=2) = (1 +

p
3i)=2:
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For the moment, we proceed ahead as if we know the value of the accessary parameter
c(�): We will return to this problem in the �nal part of Section 5.
Since Sp = �p�2(�Y ); we can see from (4.2) that Sg is a globally de�ned quadratic

di�erential in Y :

Sg =  + �Y :(4.4)

Now we write  in the form  = t 0; where t is a complex number and  0 is given by
(4.1), and consider the linear ordinary di�erential equation on Y of the following form:

2y00 +

�
1

2z2(z � 1)2
+

1

2(z � �)2
+

t+ c(�)

z(z � 1)(z � �)

�
y = 0:(4.5)

We remark that I. Laine and T. Solvali [21] investigated the general di�erential equation
y00+C y = 0 with coeÆcient C meromorphic in a symply connected domain and obtained
a nice condition under which the (local) monodromy of the equation becomes trivial (see
Corollary 4.2 therein).
Introducing the auxiliary unknown function x; we can transform this equation to the

system of linear ordinary di�erential equations of the �rst order:

y0 = yA; A =

�
0 1

�1
2
( + �Y ) 0

�
;(4.6)

where y =
�
x y

�
:

For a given point z1 2 Y; let y1 =
�
x1 y1

�
and y2 =

�
x2 y2

�
be the (local) solutions of

(4.6) near the point z1 satisfying y1(z1) =
�
1 0

�
and y2(z1) =

�
0 1

�
: Then the matrix

Fz1 =

�
y1

y2

�
=

�
y01 y1
y02 y2

�
will be called the fundamental matrix of di�erential equation (4.6) at z1: Note that
detFz1 � 1: In particular, the matrix Fz1 is a holomorphic map from a neighbourhood of
z1 in Y to the complex Lie group SL(2; C ) with Fz1(z1) = I; where I denotes the identity
matrix. The matrix Fz1 itself can be regarded as an SL(2; C )-valued (local) solution of
the di�erential equation (4.6). An arbitrary (local) solution y of (4.5) near the point z1
with the initial conditions y0(z1) = a and y(z1) = b can be expressed by�

y0 y
�
=
�
a b

�
Fz1 ;

and vice versa.
The holomorphic map Fz1 can be analytically continued along any path � from z1 to

z2 in Y: The resulting germ at z2 depends only on the homotopy class [�] of � in Y; and
hence, will be denoted by H[�]: Since the germ H[�] is an SL(2; C )-valued local solution
of (4.6) near the point z2; there exists a unique constant matrix B 2 SL(2; C ) such that
H[�] = BFz2: The matrix B is called the transition matrix along [�] and will be denoted
by L[�] or, more precisely, Lt[�]: In what follows, we will denote by Y [z1; z2] the set of
homotopy classes of paths connecting z1 and z2 in Y:
By de�nition, we can see the following fundamental properties of the transition matrix:

(i) H[�] = L[�]Fz2 for [�] 2 Y [z1; z2];
(ii) L[�] = H[�](z2) for [�] 2 Y [z1; z2]; and
(iii) L[�]L[�] = L[� � �] for [�] 2 Y [z1; z2] and [�] 2 Y [z2; z3]:
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Property (ii) means that the transition matrix L[�] can be computed by (numerically)
solving di�erential equation (4.6) along the path �: (In practical computations, a polyg-
onal line should be taken as �:)
We set lt[�] = Lt[�] for [�] 2 �1(Y; z0) = Y [z0; z0]: Then, by property (iii), the map

lt : �1(Y; z0) ! SL(2; C ) is a group homomorphism and will be called the monodromy
homomorphism associated with  = t 0:
Now we consider the ratio y1=y2; which will be denoted by hz1 ; of y1 and y2 appearing

in the fundamental matrix Fz1 at z1: In other words, hz1 = � ÆFz1 ; where � : SL(2; C ) !
C P1 = bC is de�ned by � :

�
a b
c d

�
7! b=d: Then hz1 satis�es the Schwarzian di�erential

equation (4.4) and has expansion in the form h(z) = (z � z1) + b3(z � z1)
3 + � � � near

the point z1: In particular, when we take z0 as the reference point, comparing the above
expansion with (4.3), we obtain

g = k Æ h; where k(z) =
p0(0)2z

p0(0)� p00(0)z=2
and h = hz0:(4.7)

Note that the M�obius transformation k depends only on the universal covering p of Y and
that the function h can be analytically continued to the function �lt[�] Æ h along a curve
�; where �lt[�] is the M�obius transformation induced by lt[�]:
Let us look at the relation between �t'0 and lt for t 2 C ; where '0 = p�2( 0) 2 B2(D ;�

0):
First note that the monodromy homomorphism �t'0 is de�ned over the Fuchsian group
�1 = h�;�0i because B2(D ;�

0) = B2(D ;�1): We also recall that Æ : �0 ! �1(Y; z0) is the
isomorphism mapping  to p([0; (0)]): Now we are ready to state the following theorem.

Theorem 4.2. The monodromies �t'0 and �lt are essentially same. More precisely,

�t'0() = k Æ �lt(Æ()) Æ k�1(4.8)

for each t 2 C and  2 �0; where '0 = p�2 0 and k is the M�obius transformation given in

(4.7).

Proof. Set g = k Æ h; where h = hz0 : Then, as was explained, f = g Æ p near the origin.
By the analytic continuation along the image curve � = Æ() of the oriented hyperbolic
geodesic segment joining 0 and (0) in the unit disk D ; the function h changes to �lt(�)Æh:
Hence, analytically continuing both sides of f = k Æ h Æ p along this segment, we see
f = A Æ k Æ h Æ p = A Æ g Æ p near the point (0); here we write A = k Æ �lt(Æ()) Æ k�1 for
short. In particular, f Æ  = A Æ g Æ p Æ  = A Æ g Æ p = A Æ f near the origin. This implies
�'() = A:

Remark 4.1. The monodromy homomorphism �' : �! PSL(2; C ) has no natural homo-
morphic lifts �! SL(2; C ) unless we specify a homomorphic section s : � ! SU(1; 1) �
SL(2; C ) of �: In contrast, lt : �1(Y; z0)! SL(2; C ) is intrinsically homomorphic. Partic-
ularly, the composed map l0 Æ Æ : �0 ! SU(1; 1) gives a homomorphic lift of the Fuchsian
group �0: As we can see from the standard local theory of Fuchsian di�erential equations
around regular singular points, tr (lt[�]) = �2 holds for every simple loop [�] rounding
about a puncture of Y: By this constraint, the lift of �0 is uniquely determined (note that
�0 is a free group generated by three elements corresponding to punctures). Moreover,
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Y. Okumura [28] observes under this constraint that tr (l0[�]) � �2 holds for each dividing
simple loop � in Y (even in more general context). In particular, we have tr (l0[�0]) < �2
and tr (l0[�1]) < �2; where �0 and �1 are the (dividing) simple loops which will be de-
�ned below. This implies that the homomorphism l0 Æ Æ has no homomorphic extensions
to �1 = h�;�0i: In fact, if such an extension, say � : �1 ! SL(2;R); exists then it must
satisfy tr (�(2)) = tr (�()2) = tr (�())2�2 � 2 for each element  2 �: Letting  = �0;
we would have tr (�(2)) = tr (l0[�0]) < �2; which is a contradiction.

As is well known, for determination of a homomorphism � : �! PSL(2; C ); it is enough
to know the values of tr 2(�()) for  = �0; �1 and �1 = �0�1; where (�0; �1) is a standard
generator pair of �: Using Theorem 4.2, we can compute tr 2(�'(�r)) for r = 0; 1;1:
In fact, since Æ(�2r) is a dividing loop in Y; we see tr 2(�'(�r)) = �tr (�'(�2r)) + 2 =
�tr (lt(Æ(�2r))) + 2 by the above remark. However, sometimes it is more convenient to
have the representation �' itself rather than just the traces. In order to directly compute
�'() for each  2 � (up to M�obius conjugation) we use the symmetry of the domain Y
which was explained in the previous section.
Given a once-punctured torus X = D =� represented by the Teichm�uller parameter �; it

suÆces to compute the monodromy images of the standard generator pair (�0; �1) of �:
The fact that ' = p�2 2 B2(D ;�1) for each  2 B2(Y ) implies that  (z)dz

2 is invariant
under the action of �1=�

0 �= G(0; 1;1; �) < Aut(Y ); where � = �(�): Since �Y (z)dz
2 is

also invariant, A�
�1=2y becomes a local solution of (4.5) for each local solution y of (4.5)

and for A 2 G(0; 1;1; �) by the same reasoning given in Section 2, where A�
�1=2y is

de�ned by y ÆA � (A0)�1=2 and (A0)�1=2(z) = rz+s for a representative

�
p q
r s

�
2 SL(2; C )

of A: We set for FA(z1) =

�
y01 y1
y02 y2

�
A�(FA(z1)) :=

�
(A�

�1=2y1)
0 A�

�1=2y1
(A�

�1=2y2)
0 A�

�1=2y2

�
=Mz1(A)Fz1;(4.9)

where the matrix Mz1(A) is de�ned by

Mz1(A) =

�
1=(rz1 + s) 0

r rz1 + s

�
:

We consider the simple closed curves �̂0 and �̂1 in Z induced by the curves s+(1+�)=4
and s� + (1 + �)=4 parametrized by s 2 [0; 1] in C n 1

2
L� and we take the reference point

z0 in Y so that the intersection point of �̂0 and �̂1 projects to z0 under the projection
Z ! Y: Then the image curves �0 and �1 in Y represent the homotopy classes Æ(�20) and
Æ(�21); respectively.
Note that �0 separates 0 and � from 1 and 1: Hence we see that A0(z0) = p(�0(0));

where A0(z) = (z��)=(z�1) 2 G(0; 1;1; �) is determined by A0(0; �; 1;1) = (�; 0;1; 1):
Similarly, noting that �1 separates 0 and 1 from 1 and �; we have A1(z0) = p(�1(0));
where A1(z) = �=z 2 G(0; 1;1; �) is determined by A1(0;1; 1; �) = (1; 0; �; 1): For
r = 0;1; let �r be an oriented curve in Y joining z0 and Ar(z0) which is homotopic to
p�([0; �r(0)]); in other words, homotopic to the curve coming from the one s=2+(1+ �)=4
for r = 0 or s�=2 + (1 + �)=4 for r =1 in Z parametrized by s 2 [0; 1]:
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Now we are in a position to state one of our main results.

Theorem 4.3. For suitable representatives ~�0 of �0 and ~�1 of �1 in SU(1; 1);

~�t'0(~�0) = Lt[�0]Mz0(A0); and ~�t'0(~�1) = Lt[�1]Mz0(A1)

hold for all t 2 C up to an SL(2; C )-conjugacy independent of t; where '0 = p�2( 0) and
 0 is given by (4.1).

Remark 4.2. If the point z0 and the paths �0 and �1 are replaced by other z1 2 Y; �00 2
Y [z1; A0(z1)] and �

0
1 2 Y [z1; A1(z1)]; the above result remains true as far as �

0
0 �(A0)�(�

0
0)

and �01 � (A1)�(�
0
1) are freely homotopic to �0 and �1 in Y; respectively.

Proof. We set ' = t'0 for a �xed t 2 C and let f = f' : D ! bC be the normalized
developing map for ': Then f = k Æ hz0 Æ p near the origin of D ; where k is the M�obius
transformation given by (4.7). Let r represent 0 or1: Analytically continuing both sides
along the segment [0; �r(0)] in D ; we obtain

f = k Æ Lt[�r]� Æ hz0
0
Æ p

near the point �r(0); where we set z
0
0 = Ar(z0) and denote by M� the M�obius transfor-

mation induced by a matrix M 2 GL(2; C ): Noting hz0
0
Æ Ar = Mz0(Ar)

� Æ hz0 by (4.9)
and p Æ �r = Ar Æ p; we have

f Æ �r = k Æ Lt[�r]� Æ hz0
0
Æ p Æ �r = k Æ Lt[�r]� Æ hz0

0
Æ Ar Æ p

= k Æ Lt[�r]� ÆMz0(Ar)
� Æ hz0 Æ p = k Æ Lt[�r]� ÆMz0(Ar)

� Æ k�1 Æ f
near the origin. This implies �'(�r) = k Æ Lt[�r]� ÆMz0(Ar)

� Æ k�1: Hence, ~�'(~�r) =

�~kLt[�r]Mz0(Ar)~k
�1; where ~k is a matrix representing k: Since the quantities ~�t'0(~�r)

and Lt[�r]Mz0(Ar) are globally holomorphic in t; we easily see that the above signature
is constant. (Note also that the conjugacy map k does not depend on t:) Therefore, we
obtain the required equalities by choosing a suitable signature of ~�r for each r:

Remark 4.3. The following relation might be useful: For a point z1 in Y and A 2
G(0; 1;1; �); we set z2 = A(z1): Then we have L[�]Mz1 = Mz2L[A�(�)] for any path

� connecting z1 and z2 in Y:
We note also that we can use the orbifold W instead of Y in order to compute �'(�r)

directly. The present method, however, has the merit that we can \save" the polygonal
path used in solving the di�erential equation numerically. If we try to solve the di�erential
equation along a closed polygonal path, then we would need more segments.

5. Enumeration of simple closed curves

In the preceding section, we have presented a method of computing the monodromy
for a given projective structure and a  2 �: We explain here how to compute the values
of the trace function corresponding to an arbitrary simple closed geodesic in a recursive
and algebraic way using the particular values Tr~�0 ;Tr~�1 and Tr~�1 ; where

~�r is a �xed
representative of �r in SU(1; 1) for each r: The materials here are, more or less, known
although rigorous proofs for those are sometimes diÆcult to locate. The reader is referred
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to, e.g., [14], [25] and [38] for further discussions. A good introduction to the Teichm�uller
space of a torus can also be found in [10].
Since we need only the topological structure of a once-punctured torus for a while, we

treat �rst the topological once-punctured torus described as � = (R2 nZ2)=Z2:We denote
by hzi the projection of a point z 2 R2 nZ2 to �: Let [�] and [�] be the homotopy classes in
� with base point x = h(1=2; 1=2)i which are represented by the curves �(t) = x+ h(t; 0)i
and �(t) = x + h(0; t)i; 0 � t � 1; respectively. Let A and B be the homology classes
corresponding to [�] and [�]: It is well known that the fundamental group �1(�; x) is a
free group generated by [�] and [�] and that the homology group H1(�) is a free abelian
group generated by A and B: Taking A and B as a basis, we may regard H1(�) as the
lattice group Z� Z:
The fundamental group and the homology group coincide for the unpunctured torus

� = R2=Z2 and both are isomorphic to Z2 = Z� Z: In particular, the homomorphism
�1(�; x)! �1(�; x) induced by the natural inclusion �! � is canonically isomorphic to
the abelianization �1(�; x)! H1(�) = H1(�):
A simple closed curve  in � is said to be non-peripheral if  can be continuously

shrunken to neither a point nor a puncture in �: A non-peripheral simple closed curve 
corresponds to a homology class of the form pA+ qB; where p and q are relatively prime
integers, that is, fmp + nq;m;n 2 Zg = Z: We can easily understand this as follows;
cutting � along , we have a once-punctured annulus, which implies that there is another
non-peripheral simple closed curve 0 such that homology classes of  and 0 generate
H1(�), hence the homology class of  must be of the above form.
The ratio p=q will be called the slope of : Note that the slope does not depend on the

orientation of the curve.
As might be seen from the linear action of SL(2;Z) on R2 leaving Z2 invariant, the

mapping class group of � is isomorphic to SL(2;Z): This is a classical result. However,
this could be seen more easily with a stronger assertion about the relation between simple
closed curves and their slope.
Note here that the mapping class groupM(�) of � is de�ned as Homeo+(�)=Homeo0(�);

where Homeo+(�) is the group of orientation-preserving self-homeomorphisms of � and
Homeo0(�) is the subgroup consisting of all homeomorphisms which are homotopic to
the identity in �: We also remark that the mapping class group of � is isomorphic to the
quotient of the automorphism group of �1(�; x) over the inner automorphism group of
�1(�; x):

Proposition 5.1. The mapping class group of � is canonically isomorphic to SL(2;Z):

For each rational r 2 bQ there exists a non-peripheral simple closed curve in � with slope

r: If two non-peripheral simple closed curves in � have the same slope, they are freely

homotopic in � up to orientation.

The latter assertion can be found in [14].

Proof. Let S be the homeomorphism of � de�ned by S(h(s; t)i) = h(s; t)i for 0 � t �
1=2 and by S(h(s; t)i) = h(s+ 2t� 1; t)i for 1=2 � t � 1; which realizes a Dehn twist
around the curve �: Also let T be the rotation h(s; t)i 7! h(t;�s)i by �=2: Then the
induced homomorphisms S� and T� on �1(�; x) satisfy S�(�; �) = (�; ��) and T�(�; �) =
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(�; ��1); and hence, they act on H1(�) as matrices

�
1 1
0 1

�
and

�
0 �1
1 0

�
; respectively,

under the above identi�cation with Z� Z: It is well known that the above two matrices
generate SL(2;Z); and thus, the natural homomorphismM(�)! Aut(H1(�)) �= SL(2;Z)
is surjective.
A rational r 2 bQ can be written in the form r = p=q; where p and q are relatively prime

integers. Then there exist integers p0 and q0 such that pq0 � p0q = 1: We now take an

element f� in M(�) which acts on H1(�) as the matrix

�
p p0

q q0

�
: Then f�(�) has slope

r as desired.
We next show the uniqueness part. By means of the action of the mapping class

group, it is enough to show that a simple closed curve �� in �1(�; x) with slope 0 is
necessarily homotopic to � in �: Since �n�� is a punctured annulus, we can connect both
boundary components by a simple arc with endpoints at x: That arc can be regarded as a
simple closed curve, say ��; in � so that �� and �� form standard generators of �1(�; x):
Furthermore, by repeated application of the Dehn twist along ��; we can choose �� so
that it is homotopic to � in �:
If we take an orientation-preserving self-homeomorphism f of � �xing the point x

such that f�(�) = �� and f�(�) = ��; then f� acts on �1(�; x) trivially. Therefore, f is
homotopic to the identity in the unpunctured torus �: Let ft be an isotopy in � connecting
the identity and f with f0 = id and with f1 = f: Since � = R2=Z2 is an abelian group,

f̂t = ft� ft(0) is an isotopy in � �xing the origin 0 = h(0; 0)i: Hence f̂tj� is an isotopy in
� connecting the identity and f; which implies that �� is freely homotopic to �:
Finally, we show the �rst assertion in the proposition. It suÆces to prove the injectivity

of the natural homomorphism M(�) ! Aut(H1(�)) = SL(2;Z): Let f� be in the kernel
of the above homomorphism. We may assume that f �xes x: Then f�(�) and f�(�) have
slope 0 and 1; respectively. The last argument yields also that f is homotopic to the
identity in �: Hence f� is trivial on �1(�; x):

We can extract from the proposition the following corollary, which will be utilized
e�ectively below.

Corollary 5.2. Let (1; 2) be a standard generator pair of the fundamental group �1(�; x)
of the topological once-punctured torus �: Then (1; 12); (12; 2) and (2; 

�1
1 ) are all

standard generator pairs of �1(�; x):

We next recall fundamental facts about Farey triangles (cf. [25]). The reader also �nds
a good account for Farey sequences in [7] as well as an interesting historical remark.

For three points a; b; c in bR ; we denote by �(a; b; c) the hyperbolic triangle formed by
three hyperbolic geodesics in the upper half plane H connecting two of the three points
a; b and c: Let � = �(0; 1;1): Then H is tessellated by � and its conjugates by the
modular group PSL(2;Z): Note that the stabilizer of � in PSL(2;Z) consists of three
elements and permutes the vertices of � cyclically. Each triangle which is conjugate with
� by the action of PSL(2;Z) is called a Farey triangle. The initial Farey triangle � and
its reection �0 = �(0;�1;1) in the imaginary axis form a fundamental domain of the
modular group G2 = f�C 2 PSL(2;Z);C � I mod 2g of level 2: We will say that both
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� and �0 are of level 0: A Farey triangle which shares a side with that of level 0 will be
called of level 1 unless it is of level 0: Similarly, a Farey triangle which shares a side with
that of level n will be called of level n+1 unless it is of level � n: It is important to note
that the corresponding graph to the above tessellation is a tree, namely, there is no closed
circuit.
It is well known that the orbit of 0 under the action of PSL(2;Z) coincides with bQ : We

denote by ~F(n) the set of rationals which appear as vertices of Farey triangles of level � n:
Set F(n) = ~F(n) n ~F(n� 1) for n = 0; 1; : : : : For instance, F(0) = f�1; 0; 1;1g; F(1) =
f�2;�1=2; 1=2; 2g; F(2) = f�3;�3=2;�2=3;�1=3; 1=3; 2=3; 3=2; 3g and so on. We note
that #F(n) = 2n+1 for n � 1: An element r in F(n) will be called of level n and designated
by level(r) = n: Two rationals r1 and r2 in bQ are said to be Farey neighbours if r1 and r2
are distinct vertices of a common Farey triangle. For convenience, we adopt the notation
r1 � r2 to mean that r1 and r2 are Farey neighbours. It should be remembered that this
is not an equivalence relation. Note that if r1 � r2 then jlevel(r1)� level(r2)j � 1 unless
level(r1) = level(r2) = 0:

For two rationals r1 = p1=q1 and r2 = p2=q2 in bQ ; where pj and qj are relatively prime
integers, we assign the number D(r1; r2) = jp1q2 � p2q1j: Note that this is independent of
the particular choice of signs of pj and qj: The following statement will be useful in our
argument below.

Lemma 5.3. Two rationals r1 and r2 are Farey neighbours if and only if D(r1; r2) = 1:

Proof. First assume that D(r1; r2) = 1: Then r1 and r2 can be written in the form
r1 = p1=q1 and r2 = p2=q2 so that p1q2 � p2q1 = 1: The M�obius transformation g(z) =
(p1z + p2)=(q1z + q2) sends 1 to r1 and 0 to r2; which implies that the Farey triangle
g(�) contains r1 and r2 as vertices. The converse can be seen similarly.

Let r1 and r2 be Farey neighbours with 0 � r1 < r2 � 1: Then they are represented
in the form rj = pj=qj; where pj and qj are non-negative integers for j = 1; 2 and satisfy
p2q1 � p1q2 = 1: We de�ne r1 � r2 = r2 � r1 = (p1 + p2)=(q1 + q2): Similarly, we de�ne
r1 	 r2 = r2 	 r1 = (p1 � p2)=(q1 � q2): For these operations, one can show the following
result.

Lemma 5.4. Let r1 and r2 be Farey neighbours with 0 � r1 < r2 � 1: Then �(r1; r2; r1�
r2) and �(r1; r2; r1 	 r2) are Farey triangles sharing the side connecting r1 with r2 and

the inequality r2 < r1 � r2 < r1 holds.

Conversely, any rational r with 0 < r < 1 can uniquely be decomposed into the form

r = r1 � r2 for rationals 0 � r1 < r2 � 1 with r1 � r2: Furthermore if r 6= 1 then

level(r) = maxflevel(r1); level(r2)g+ 1 and level(r1) 6= level(r2):

Proof. It is immediate to see that r1 � r2 � rj and r1 	 r2 � rj for j = 1; 2 and that
r1 < r1�r2 < r2: Hence, the �rst half of the assertion has been shown. To show the second
half, assume that 0 < r <1 is a rational and let n = level(r): Then there is a sequence
of Farey triangles �0 = �;�1; : : : ;�n such that �k�1 and �k have a common side for
k = 1; : : : ; n and that �n has r as its vertex. Set ��1 = �0 for convenience. Note that �k

is of level k and is contained in the right half of the upper half plane H for k = 0; 1; : : : ; n:
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Let r1 and r2 be the other two vertices of �n: Since the side of �n connecting r1 with
r2 separates r from the left half of H ; r lies between r1 and r2; and hence, the relation
r = r1 � r2 follows. Assume now that r 6= 1: Then n > 0 and �n�1 = �(r1; r2; r1 	 r2):
In particular, maxflevel(r1); level(r2)g � n � 1: On the other hand, �n�1 shares a side
joining r1 	 r2 and, say, r2 with �n�2: We see then that level(r1) = n � 1 and that
level(r2) � n� 2:

For each rational r with 0 < r <1; r 6= 1; we de�ne r� by r� = r1 	 r2; where r1 and
r2 are as above. Then r

� < minfr1; r2g or r� > maxfr1; r2g: From the above proof, one
can also see that maxflevel(r�); level(r2)g = n � 2 if level(r1) = n � 1: Moreover, under
the assumption that r1 < r2; the inequality r2 < r� holds if and only if level(r1) = n� 1:
Finally, we extend the above operations for all pairs (r1; r2) of Farey neighbours. When

0 � �r1;�r2 � 1; we set r1� r2 = �(�r1)� (�r2) and r1	 r2 = �(�r1)	 (�r2) unless
fr1; r2g = f0;1g: Also let r� = �(�r)� for a rational r with 0 < �r < 1 and r 6= �1:
For r = �1; we set r� = �1:

We now return to our case. Let X be a marked once-punctured torus with Teichm�uller
parameter �: Let H : R2 ! R2 = C be the R-linear map sending (1; 0) to 1 and (0; 1)
to �: Then H induces a homeomorphism h from the topological once-punctured torus �
onto X = (C n L� )=L� : The terminology above is translated, via h : � ! X; to that
for X with standard generator pair (�0; �1) of the Fuchsian group � uniformizing X: For
instance, a non-peripheral simple closed curve  in X has slope r if and only if h�1

� ()
has slope r: By Proposition 5.1, the conjugacy class of an element �r in � representing a
non-peripheral simple closed curve of slope r is uniquely determined. In particular, the
squared trace function Tr2�r : B2(D ;�) ! C is determined by its slope. We now explain

how to compute the trace functions Tr~�r for all r 2 bQ and suitable representatives ~�r of
�r in SU(1; 1) in a recursive way by using only the values for r = 0; 1 and 1:

We begin by setting �r = Tr~�r for r = 0; 1;1; where ~�0 and ~�1 are arbitrarily �xed

representatives of �0 and �1; respectively, and ~�1 = ~�0~�1: De�ne ��1 by the formula
��1 = �0�1� �1: If we have de�ned the functions �r : B2(D ;�) ! C for all r 2 ~F(n); we
then de�ne �r for r 2 F(n+ 1) by the formula

�r = �r1�r2 � �r� ;(5.1)

where r1 and r2 are Farey neighbours satisfying r = r1 � r2: Note here that r1; r2 and r
�

are all in ~F(n): In this way, we can de�ne the functions �r for all r 2 bQ :
Proposition 5.5. The mapping �r : B2(D ;�) ! C gives the trace function for a non-

peripheral simple closed curve of slope r in X for each r 2 bQ :
Proof. In order to prove the proposition, we construct elements ~�r in e� = P�1(�) rep-
resenting non-peripheral simple closed curves of slope r in a concrete way. Note that a
similar construction can be found in [14]. We start with ~�0; ~�1 and ~�1 = ~�0~�1; which
represents a simple closed curve of slope 1: By Corollary 5.2, (�0; �1) and (�1; �1) are

standard generator pairs of �; where �1 = P (~�1): Suppose that we have de�ned ~�r 2 e� for
all r 2 ~F+(n) := ~F(n) \ [0;1] in such a way that the following properties are satis�ed:
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(1) �r represents a simple closed curve of slope r in X for r 2 ~F+(n); where �r = P (~�r);
and

(2) (�r1 ; �r2) is a standard generator pair for each pair of Farey neighbours r1; r2 2 ~F+(n)
with 0 � r1 < r2 � 1:

Then, for r 2 F(n+ 1) with 0 < r <1; we de�ne ~�r by

~�r = ~�r1
~�r2 ;

where r1 and r2 are unique Farey neighbours with 0 � r1 < r2 � 1 satisfying r = r1� r2
(see Lemma 5.4). Note also, by Corollary 5.2, that (�r1 ; �r) and (�r; �r2) are standard
generator pairs of �; where �r = P (~�r): In particular, �r represents a simple closed curve

with slope r: In this way, we extend ~�r for all r 2 ~F+(n + 1); while preserving the above

properties (1) and (2). By induction, we extend ~�r for all r 2 bQ \ [0;1]:

For r 2 bQ \ (�1; 0); we can apply the same argument as above by replacing (�0; �1)
by (�1; �

�1
0 ): More precisely, we set ~�00 =

~�1; ~�
0
1 = ~��1

0 and ~�01 =
~�00
~�01 = ~�1~��1

0 : Then ~�01
represents a simple closed curve of slope �1 in X: Also, in the same way as above, we let

~�0r =
~�0r1

~�0r2

for r 2 F(n + 1) with 0 < r < 1 after de�ning ~�0s for all s 2 ~F+(n): Finally, we set
~��r = ~�0r for r 2 bQ \ (�1; 0): Then we can easily see that ��r = P (~��r) represents a
simple closed curve of slope �r in X:
We are now at the �nal stage to show the assertion. The key is the general formula

trAB + trA�1B = trA trB

for A;B 2 SL(2; C ): Let �̂r = Tr~�r for r 2 bQ : Then �̂r = �r for all r 2 ~F(0): We show

the same statement for all r 2 ~F(n) for each n by induction. Suppose that we have
shown this up to n: Let r 2 F(n + 1) and r1 and r2 be unique Farey neighbours with
r1 < r2 satisfying r = r1 � r2: Since r1; r2; r

� = r1 	 r2 2 ~F(n); we see that �̂s = �s for
s = r1; r2; r

�: As we observed above, r2 = r1� r� if r2 < r�: In this case, ~�r� = ~��1
r1
~�r2 ; and

hence,

�̂r(') = tr ~�'(~�r1 ~�r2) = tr ~�'(~�r1)tr ~�'(~�r2)� tr ~�'(~�
�1
r1
~�r2)

= �r1(')�r2(')� �r�(') = �r('):

When r� < r1; the relation r1 = r� � r2 holds, and hence, ~�r� = ~�r1
~��1
r2 : Since trA

�1B =
trAB�1; we can see the same relation �̂r = �r as above. We now conclude that Tr~�r = �r

for all r 2 bQ by induction.

6. McMullen's bending coordinates of the Bers slice

Following McMullen [24], we describe the bending coordinates of the Teichm�uller space
T (�) of a once-punctured torus X = D =�: For precise de�nitions for the terminology
below, see [24] or references cited there.
Considering the slope, we have identi�ed the space of simple closed geodesics on X withbQ = Q [f1g: Extending this continuously, we obtain the homeomorphic identi�cation of
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the projectivized space PML(X) of measured laminations on X with the extended real

line bR �= S1:
The region of discontinuity of the quasi-Fuchsian group �'(�) for ' 2 T (X) n f0g con-

sists of two quasidisks f'(D ) and bC nf'(D ), which are denoted by 
+
' and 
�' ; respectively.

We remark that �'(�) is never Fuchsian for ' 2 T (�) n f0g: Since f' is conformal on
D , 
+

'=�'(�) is always conformally equivalent to X, whereas X�
' := 
�'=�'(�) varies.

We denote by C' the hyperbolic convex hull of the limit set �' � bC of �'(�) in the

hyperbolic three-space H 3 ; where we identify bC with the sphere at in�nity of H 3 : Then
the boundary @C' in H 3 consists of two connected components @C�' facing to 
�' . We
write M' for the hyperbolic three manifold H 3=�'(�): Then C'=�'(�) is the convex core
of M', whose boundary consists of two connected components @C�' =�'(�): The nearest
point retraction from 
�' to @C�' induces the homotopy equivalence between 
�'=�'(�)
and @C�' =�'(�), and hence, @C�' =�'(�) are both topological punctured tori (see for ex-
ample [5]). The surfaces @C�' =�'(�) are endowed with the hyperbolic metric by M' and
both are pleated surfaces with the natural bending measures on their pleating loci. We
denote by [pl�(')] the projective class in PML(X) of the pleating locus of C�' =�'(�):
Note that each connected component of @C�' minus its pleating locus is contained in a
hyperbolic plane in H 3 : We write `pl�(')(M') and `pl�(')(X) for the hyperbolic length of

the bending lamination pl�(') on @C�' =�'(�) and on X; respectively. Now we can state
a result of McMullen [24] on the bending coordinates of T (�):

Theorem C ([24, Theorem 1.5]). The mapping

� : ' 7!
 
[pl�(')];

`pl�(')(M')

`pl�(')(X)

!
gives a homeomorphism from T (�) n f0g onto PML(X) � (0; 1) = bR � (0; 1); where we

identify PML(X) with bR �= S1 as above.

For r 2 bR ; we set Pr = ��1(frg� (0; 1)): These proper arcs in T (�)nf0g will be called
pleating rays. Especially for r 2 bQ , Pr is called a rational pleating ray of slope r: We

remark that `pl�(')(X) is constant on Pr: In particular, if r 2 bQ ; we have `pl�(')(X) =
arccosh(jtr �rj=2) for ' 2 Pr:
The next result guarantees computability of rational pleating rays up to the accessary

parameter. For r 2 bQ , put
Hr := f' 2 B2(D ;�) ; �r(') is real and �r(')

2 > 4g = ��1
r ((�1;�2) [ (2;+1))

and call it the hyperbolic locus of slope r: Note that 0 2 Hr for all r 2 bQ :
Theorem 6.1. The rational pleating ray Pr; r 2 bQ ; is the unique connected component

of Hr n f0g with endpoint 0 on which �r(')
2 is strictly smaller than �r(0)

2:

Besides Theorem C, we need the local pleating theorem due to Keen and Series [13,
Theorem 8.1] for the proof of our theorem. We state it here in a specialized form for our
aim.
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Theorem D. Let '0 2 Pr [ f0g for some r 2 bQ : Then there exists a neighbourhood U
of '0 in T (�) such that every element ' 2 (Hr n f0g) \ U satis�es either [pl�(')] = r or

[pl+(')] = r:

Proof of Theorem 6.1. Let r 2 bQ : We may assume that �r(0) > 2: Take a point ' 2 Pr,
then the axis of �'(�r) in H 3 lies on the boundary @C�' which is invariant under �'(�r):
Therefore �'(�r) does not rotate H

3 around the axis, namely, it is hyperbolic (see [13,
Proposition 6.4] for details), which implies that Pr is contained in Hr n f0g:
Recall the inequalities due to McMullen [24, Corollary 3.5]

`pl�(')(X
�
') < `pl�(')(M') < `pl�(')(X) and(6.1)

`pl+(')(X) < `pl+(')(M') < `pl+(')(X
�
')(6.2)

for every ' 2 T (�) n f0g: Since `pl�(')(M') = arccosh(�r(')=2) for ' 2 Pr; we see that
�r(')! 2 as ' approaches the Bers boundary along Pr by Theorem C. This means that
the endpoint of Pr corresponds to the cusp pinched along the simple closed geodesic of
slope r: In particular, Pr is closed in Hr n f0g:
In order to show that Pr is a connected component of Hr n f0g ending at the basepoint

0 on which �r < �r(0); it suÆces to see that Pr is open in Hr nf0g: Suppose that '0 2 Pr:
Note from (6.1) that 2 < �r('0) < �r(0): Therefore, j�rj < �r(0) in a suÆciently small
neighbourhood U of '0 in T (�) n f0g: By Theorem D, we can further choose U so that
every ' 2 Hr \ U satis�es [pl�(')] = r or [pl+(')] = r: If the latter case occurred, (6.2)
would yield �r(0) < j�r(')j: However, this contradicts the choice of U: Therefore, only
the �rst case occurs, namely, Hr \ U � Pr: Thus the openness follows. The uniqueness
immediately follows from Theorems C and D.

Figure 1. Bers embedding of the once-punctured square torus with pleat-
ing rays of level � 4
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Figure 2. Bers embedding of a once-punctured \long" rectangular torus
(� = 0:001)

We emphasize that the set described in the above theorem can be computed, at least
in a numerical way, by tracing the real locus of the function �r in the decreasing direction
from the origin. Figure 1 and 2 were created in this way. The above theorem shows also
that the entire function �r has no branch point on the pleating ray Pr and at the origin.
Furthermore, H. Miyachi [26] recently proved that �r has no branch point at the cusp
corresponding to �r: Summarizing the above, we obtain the next result.

Corollary 6.2. Each rational pleating ray Pr in T (�) with its endpoints is a regular

analytic simple closed arc and �r(')
2 is positive real and decreases to 4 when ' moves

along the ray toward the cusp on the Bers boundary of T (�) corresponding to slope r:

We take a closer look at the analytic structure of pleating rays for the later use.

Theorem 6.3. Any two of rational pleating rays intersect transversally at the basepoint

unless the tangent vectors have opposite directions there.

The above assertion seems true even when we allow all pleating rays. We, however,
content ourselves here with the above form since we will require only the case of rational
pleating rays in this paper. See the �nal part of this section explaining how to numerically
compute the value of accessary parameter and a standard pair of generators of a Fuchsian
group.
We should comment on the similar result for the Maskit embedding of the Teichm�uller

space of once-punctured tori (see [14], [25] and [38]). The Maskit embedding is a deforma-
tion space of terminal regular b-groups of type (1; 1) and it is realized as an unbounded
domain in H , where 1 plays the same role as the base point in the Bers embedding even
though no groups correspond to 1. Rational pleating rays can also be considered for
the Maskit embedding; among other things, Keen and Series [14, Proposition 3.2] showed
that for a point � = s+ it of the rational pleating ray of slope p=q; the real part s tends
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to 2p=q as t!1: This result implies that the asymptotic behaviour of rational pleating
rays at the base point (1 for the Maskit embedding) characterizes them.
To prove Theorem 6.3, we need a preliminary result connecting the real analytic struc-

ture of the Teichm�uller space with the complex analytic one, which might be of indepen-
dent interest.
Let  be a hyperbolic element in an arbitrarily given Fuchsian group �: We denote

by ` : T (�) ! R+ the length function on T (�) corresponding to ; namely, `(')
is hyperbolic length of the closed geodesic corresponding to  in the Riemann surfaces


�'=�'(�); where 

�
' = bC n f'(D ): Let "(') be the logarithm of multiplier of �'() with

positive real part for ' 2 T (�): Therefore, �2
(') = tr 2�'() = 2 cosh("(')) + 2 and

Re "(') > 0: If we knew the conformal mapping g' from D onto 
�' ; we could relate `
to " by the formula

tr 2
�
g'

�1 Æ �'() Æ g'
�
= 2 cosh `(') + 2:

It is, however, diÆcult to manage g'; in general. At least, we can say something at the
origin.

Lemma 6.4. For a �xed ' 2 B2(D ;�); the formula

d

dt
`(t')

����
t=0

= Re
d

dt
"(t')

����
t=0

holds, where the di�erentiation is taken with respect to the real parameter t:

Proof. We refer the reader to [10] and [27] as standard textbooks for the basic facts used
herein. In this proof, we take advantage of the lower half-plane H � instead of the unit
disk D ; so that we regard � as a Fuchsian group acting on H : This procedure is harmlessly
done, as usual, through the Cayley transform z 7! �i(1 + z)=(1� z):
Let � be a Beltrami di�erential for � in H with k�k1 < 1: We extend � to be 0 in H � :

On the other hand, let �� denote the Beltrami coeÆcient for � de�ned by

��(z) =

8><>:
�(z); z 2 H ;

�(�z); z 2 H � :

We denote by F � and F� the quasiconformal self-homeomorphism of C with Beltrami
coeÆcients � and ��; respectively, normalized so as to �x 0 and 1: Note that F� maps H
onto itself while F � maps H � conformally onto the quasidisk F �(H �): (Note also that F � Æ
F�

�1 is a conformal mapping from H onto F �(H ):) Therefore, F��F�
�1 is a Fuchsian group

while F ��(F �)�1 is a Kleinian group acting on F �(H �): It is known that the mapping
� : � 7! SF�jH� is a holomorphic submersion from the open unit ball of the Banach space
of Beltrami di�erentials for � onto T (�):
For a given '; we take a Beltrami di�erential � in such a way that the Fr�echet derivative

of � at the origin sends � to ':
Let  2 � be a hyperbolic element. By suitable M�obius conjugate, we may assume that

 is expressed in the form (z) = e"0z; where "0 > 0 is a constant. Set t = F t�ÆÆ(F t�)�1

and t = Ft� Æ  Æ F�1
t� for t 2 R small enough. Then, by de�nition, these M�obius
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transformations can be written as

t(z) = e"(t)z and t(z) = e"
�(t)z:

We now recall Gardiner's variation formula for the multiplier of a hyperbolic M�obius
transformation under the quasiconformal mappings, [6]. As Miyachi remarked in [26], the
formula is still valid not only for Fuchsian groups but also for Kleinian groups. Gardiner's
formula reads as

d

dt
"(t)

����
t=0

=

ZZ
A+

�(z)

z2
dxdy; and

d

dt
"�(t)

����
t=0

=

ZZ
A

��(z)

z2
dxdy =

ZZ
A+

 
�(z)

z2
+
�(z)

�z2

!
dxdy;

where A = f1 < jzj < e"g and A+ = A \ H : Hence, we obtain ("�)0(0) = 2Re "0(0):
From the de�nitions, the basic relations 2`(�(t�)) = "�(t) and "(�(t�)) = "(t) follow.

Noting that �(t�) = t' + O(jtj2) as t ! 0; we get the desired relation between ` and
":

Proof of Theorem 6.3. The argument and notation herein will be based on a paper of
McMullen, [24]. Let r 2 bQ : Since Pr is a real locus of an analytic function de�ned in C ;
the unit direction vector of Pr at the origin,

�r = lim
'!0 in Pr

k'k�1
D
';

is well de�ned. We show that the mapping r 7! �r is injective on bQ :
First we observe that �r is parallel to the tangent vector d

dt
grt(X

�) at t = 0; where
grt(X

�) is the point in T (�) corresponding to the time t grafting of the mirror image
X� = X�

0 of X along the simple closed geodesic representing a hyperbolic element  2 �
of slope r: Let u be the real part of the holomorphic function " : T (�)! C given above.
By the relation �2

(') = 2 cosh("(')) + 2; the vector �r has the opposite direction to
the gradient ru at the origin because u is harmonic. On the other hand, McMullen's
theorem [24, Theorem 3.8] states the formula

d

dt
grt(X

�) = �r`(X�);

where the gradient is taken with respect to the Weil-Petersson metric. In our case, the
Teichm�uller space T (�) is one-dimensional, and therefore, the Weil-Petersson (K�ahler)
metric is conformally equivalent to the Euclidean metric. Now, the formula r` = ru
deduced from Lemma 6.4 connects these facts to conclude the above claim.
To show the injectivity, we next use the fact that grafting and twisting along  are

related by the relation d
dt
grt(X

�) = i � d
dt
twt(X

�) at the origin with a suitable orientation
for  (see the proof of Theorem 3.8 in [24]). Therefore, the (positive) earthquake path
and the pleating locus (with respect to ) form the right angle at the basepoint. Hence, it
suÆces to show that di�erent earthquake paths starting from the basepoint have di�erent
directions. This assertion has been proved by Kerckho� [15, Theorem 3.5] in a more
general setting.
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We conclude this section with a comment on the numerical computation of the accessory
parameter and the Fuchsian group uniformizing a given once-punctured torus.
In the above, we have assumed that we know the value of the accessory parameter.

However, in practical calculations, we need to know it in advance. We now indicate how
to do that by using our methods developed above. Let � 2 C n f0; 1g be given. Instead
of (4.5), we consider the di�erential equation

2y00 +

�
1

2z2(z � 1)2
+

1

2(z � �)2
+

t

z(z � 1)(z � �)

�
y = 0:(6.3)

Let �0 and �1 be the same as in Section 4 and let L̂t[�r] be the transition matrix

of (6.3) along the path �r for r = 0;1: We set A(t) = L̂t[�0]Mz0(A0) and B(t) =

L̂t[�1]Mz0(A1); where Mz0(Ar) is given in Section 4. We consider the three entire func-
tions F0(t) = trA(t); F1(t) = trB(t) and F1(t) = trA(t)B(t): Note that the M�obius group
�(t) generated by A(t) and B(t) is conjugate to a subgroup of PSL(2;R) if and only if
the values F0(t); F1(t) and F1(t) are all real. In particular, provided that the monodromy
homomorphism �! �(t) corresponds to a point in T (�); the quasi-Fuchsian group �(t)
is Fuchsian if and only if F0(t); F1(t) and F1(t) are all contained in (�1;�2)[ (2;+1):
Since �(c(�)) is M�obius conjugate with the original Fuchsian group � uniformizing the
once-punctured torus X with the Teichm�uller parameter � satisfying �(�) = � by Theo-
rem 4.3, such a point t is a candidate for the value of the accessory parameter c(�): Note
also that �(t) is never Fuchsian for t with 0 < jt� c(�)j < 2=k 0kY by the Ahlfors-Weill
theorem (see Section 2).
Hence, if we are given an initial point t0 which is suÆciently close to c(�); we can

construct a sequence tn tending to the value c(�) as follows. By Theorem 6.3, we can
choose two of F0; F1; F1; say F0 and F1; so that the corresponding pleating rays P0 and
P1 are transversal at the basepoint. Then the point t = c(�) will be determined (at least
locally) as the intersection of the real loci of functions F0 and F1: Set

t2j+1 = t2j � i
ImF0(t2j)

F 0
0(t2j)

and

t2j+2 = t2j+1 � i
ImF1(t2j+1)

F 0
1(t2j+1)

for j = 0; 1; : : : : Then, in a similar way to Newton's method, the sequence tn converges
to c(�) if t0 is suÆciently close to c(�) (see, for example, [29, x 3.5.2]). Note here that the
transversality of the pleating rays guarantees the convergence of tn:
We make a few technical remarks. Since it is diÆcult to calculate the derivative of

Fr; practically we replace it by a suitable di�erence quotient in the above formulae like
the Secant method. It is typical to use (Fr(tn) � Fr(tn�2))=(tn � tn�2) as the di�erence
quotient provided that tn � tn�2 is suÆciently small.
It is diÆcult to give the initial point t0 a priori for a given �: However, if we know the

value of c(�0) for some �0 (e.g., �0 = 1=2), we may choose a �nite sequence �1; �2; : : : ; �n =
� so that �j and �j�1 are close enough for j = 1; : : : ; n: Then, we could compute c(�j)
by using the value of c(�j�1) as the initial point t0 for �j: In this way, we could reach �
after n-times of this procedure.
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Using the above method, we have drawn the graph of the function c(�) in 0 < � < 1=2
in Figure 3. Note that Hempel [8] has obtained the asymptotic formula

c(�) =
1

2
� �2

2(� log j�j)2 (1 + o(1))

as �! 0 in C :

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

Figure 3. Graph of the accessory parameter c(�) in 0 < � < 1=2

7. Relationship with Heun's differential equation

In this section, we explain that our di�erential equation (4.5) can be translated to
Heun's di�erential equation in the standard way. It may be more advantageous to use
the latter form because that is more widely studied and the behaviour of coeÆcients is
tamer than the former near the singularities (see [31] and its extensive references).
Heun's equation has the form

u00 +

�
c0
z
+

c1
z � 1

+
c2

z � �

�
u0 +

abz � q

z(z � 1)(z � �)
u = 0;

where c0; c1; c2; a; b and q are complex parameters satisfying the relation

c0 + c1 + c2 = a + b+ 1:

More generally, a linear di�erential equation of the form u00 + Pu0 + Qu = 0 can be
transformed locally to the form y00 + Ry = 0 by putting u(z) = exp(� R z P (�)d�=2)y(z):
In the case when c0 = c1 = c2 = a = b = 1 and q = (1 � t � c(�))=2; Heun's equation
takes the form

u00 +

�
1

z
+

1

z � 1
+

1

z � �

�
u0 +

2z + t + c(�)� 1

2z(z � 1)(z � �)
u = 0(7.1)

and the above-mentioned transformation

u =
yp

z(z � 1)(z � �)

reduces Heun's equation to our equation (4.5). It is an interesting fact that the factor

!(z) := 1=
p
z(z � 1)(z � �) forms a basis of the one-dimensional vector space of Abelian
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di�erentials on the torus de�ned as the algebraic curve w2 = z(z�1)(z��): In particular,
(! Æ A) �A0 = �! holds for an automorphism A of Y = C n f0; 1; �g:
Therefore, for a solution u of (7.1) and A 2 Aut(Y ); we can see that A�

1=2u := (u Æ
A)(A0)1=2 is a solution of (7.1) again.
We now set eFz1 = �u01 u1

u02 u2

�
;

where u1 and u2 are the fundamental solutions of (7.1) at z1; namely, the solutions satis-
fying the initial conditions u1(z1) = 0; u01(z1) = 1 and u2(z1) = 1; u02(z1) = 0; respectively,

and for [�] 2 Y [z1; z2] we denote by eH[�] the germ at z2 obtained by analytic continuation

of the fundamental matrix eFz1 along the path � in Y: In the same way as in the case of

(4.5), we also de�ne the transition matrix eL[�] = eLt[�] by the relation eH[�] = eL[�] eFz2 for
[�] 2 Y [z1; z2]: Then, the similar relations to (i), (ii) and (iii) in Section 3 hold for these
quantities. Noting the elementary identity

!

�
y1
y2

�
=

�
!(z1) 0
!0(z1) !(z1)

��
u1
u2

�
= K(z1)

�
u1
u2

�
for the fundamental solutions of (4.5) and (7.1) at z1; where

K(z) = !(z)

�
1 0

�(z) 1

�
; �(z) = �1

2

�
1

z
+

1

z � 1
+

1

z � �

�
;

we have the fundamental relation Fz1K = K(z1) eFz1 near z1 2 Y: By analytic continuation,
we obtain H[�]K(z2) = K(z1) eH[�] for [�] 2 Y [z1; z2]; in particular,

L[�] = K(z1)eL[�]K(z2)
�1:(7.2)

Let z1 be a point in Y = C nf0; 1; �g: We now take curves "1; "2; "3 and "4 in Y starting
from z1; rounding 0; 1; � and1 once anticlockwise and ending at z1; respectively, so that
�1(Y; z1) = h["1]; ["2]; ["3]; ["4]i and ["1]["2]["3]["4] = 1: Then, the next result immediately
follows.

Theorem 7.1. Let lt and ~lt be monodromy homomorphisms of di�erential equations (4.5)
and (7.1) from �1(Y; z1) into SL(2; C ); respectively. We then have lt["j] = �~lt["j] for
j = 0; 1; 2; 3: In particular, lt = ~lt on the canonical image of the Fuchsian group �0 = �\�0:
Corollary 7.2. The monodromy group is discrete for (4.5) if and only if so is that for

(7.1).

Since L[�r]Mz0(Ar) is conjugate with eL[�r]fMz0(Ar) in GL(2; C ); where fMz0(Ar) =
K(Ar(z0))

�1Mz0(Ar)K(z0) for r = 0;1; we obtain the following statement from Theorem
4.3.

Theorem 7.3. For suitable choices of representatives ~�0 of �0 and ~�1 of �1 in SU(1; 1);

~�t'0(~�0) = eLt[�0]fMz0(A0); and ~�t'0(~�1) = eLt[�1]fMz0(A1)

for any t 2 C up to SL(2; C )-conjugacy, where '0 = p�2( 0):
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