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Abstract

We study the well-known Beltrami equation under the assumption that its measur-

able complex-valued coeÆcient �(z) has the norm k�k1 = 1: SuÆcient conditions for

the existence of a homeomorphic solution to the Beltrami equation on the Riemann

sphere are given in terms of the directional dilatation coeÆcients of �: A uniqueness

theorem is also proved when the singular set of � is contained in a totally disconnected

compact set with a certain geometric condition.

2000 Mathematics Subject Classi�cation. AMS (MOS) 30C62.

1. Introduction

The analytic theory of plane quasiconformal mappings f is based on the Beltrami

partial di�erential equation

f�z = �(z) fz a.e.(1.1)

with the complex-valued measurable coeÆcient � satisfying the uniform ellipticity

assumption k�k1 < 1: In the case j�(z)j < 1 a.e. in C and k�k1 = 1; equation

(1.1) is called a degenerate Beltrami equation and the structure of the solutions

heavily depends on the degeneration of �: In this article, unless otherwise stated,

by a Beltrami coeÆcient in a domain 
 we mean a complex-valued measurable

function � in 
 such that j�j < 1 a.e. in 
; and by a solution to the Beltrami

equation (1.1) in a domain 
 we mean a function f in the Sobolev space W 1;1
loc (
)

whose partial derivatives satisfy (1.1) in 
: Then, f is called �-conformal in 
:

The measurable Riemann mapping theorem (cf. [1]) states that given a mea-

surable function � in the plane C with k�k1 < 1 there is a quasiconformal
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homeomorphism f : C ! C ; f 2 W 1;2
loc (C ); satisfying (1.1). Contrary to this,

the degenerate Beltrami equation need not have a homeomorphic solution and a

solution, if it exists, need not be unique. See, for instance, [11]. Therefore, in

order to obtain existence or uniqueness results, some extra constraints must be

imposed on �:

The degeneration of � is usually expressed in terms of the pointwise maximal

dilatation function

K(z) = K�(z) =
1 + j�(z)j
1� j�(z)j :(1.2)

This takes into account the absolute value of � only. In this paper we show that

for sharper results the argument of �(z) should also be considered. For example,

consider the Beltrami coeÆcients �1(z) = (1� jzj)z=�z and �2(z) = (jzj � 1)z=�z

de�ned in the unit disk D : It is immediate that k�jk1 = 1; j = 1; 2; and K�1(z) =

K�2(z) whenever z 2 D n f0g: The radial stretching f1 : D ! D ; de�ned by

f1(z) =
z

jzj2 e
2(1�1=jzj)(1.3)

for z 2 D n f0g; f1(0) = 0; is �1-conformal. The second radial stretching

f2(z) =
z

jzj(2� jzj)(1.4)

in the punctured disk D n f0g is �2-conformal and has the cavitation e�ect since

it maps D n f0g homeomorphically onto the annulus 1=2 < jzj < 1: Actually, the

continuous solution to the Beltrami equation with � = �2 is unique up to the

post-composition of analytic functions, cf. Proposition 4.1 below, and hence the

cavitation is inevitable in this case. Thus the cavitation problem requires more

precise information on � than merely on j�j:
To study the aforementioned problem we employ the angular dilatation coef-

�cient D�;z0; see (2.13) below, to take into account an e�ect of the argument of

� as well. On one hand, it allows us to prove the existence of a homeomorphic

solution f to the Beltrami equation (1.1) for a given Beltrami coeÆcient � with

k�k1 = 1 provided that D�;z0 satis�es a local integrability condition for each

z0; see Theorem 3.5. We also obtain an estimate for the modulus of continuity

of f: On the other hand, we establish a uniqueness theorem for the solution of

(1.1) in the case when the singular sets of � are totally disconnected compacta

with certain geometric condition involving D�;z0; see Theorem 4.3. The modulus
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estimate for annuli in Lemma 2.19 in terms of the integral means of the angu-

lar dilatation coeÆcients plays a crucial role in the proof of the existence and

uniqueness results. A normal family argument is also used, see Propositions 2.1

and 2.3.

The idea of employing � instead of j�j in the study of some regularity prob-

lems for quasiconformal mappings is due to Andreian Cazacu [2] and Reich and

Walczak [19]. O. Lehto [13], [14] was the �rst who considered the degenerate

Beltrami equation from this point of view.

The degeneration of � in terms of j�(z)j orK�(z) has recently been extensively

studied. This is due to the close connection of f in (1.1) to the solutions of elliptic

partial di�erential equations. For the earlier studies of �-homeomorphisms we

refer to [4], [5], [18] and [17]. The results of Pesin [18] have been substantially

extended by Brakalova and Jenkins [6]. For the recent deep theorems on the

existence and uniqueness of �-homeomorphisms see Iwaniec and Martin [11],

who extended the well-known results of David [8] and Tukia [23], and see also

[21], [20], [7] and the references therein.

Let us indicate a couple of features of our main results. First, by virtue

of adoption of the angular dilatation coeÆcients, the existence theorem and its

primitive, Theorem 2.15, cover many cases when K� fails to satisfy known in-

tegrability conditions, see, for instance, Examples 3.29 and 3.33. Even the case

when the singular set of � consists of �nitely many points is of independent

interest, see Section 3.

1.5. Theorem. Let �(z) be a Beltrami coeÆcient in bC such that the set of

singularity Sing(�) consists of �nitely many points. Then there exists a homeo-

morphism f : bC ! bC which is locally quasiconformal in bC n Sing(�) and whose

complex dilatation �f satis�es j�f(z)j = j�(z)j a.e.

Secondly, Theorem 3.5 applied to the classical setting involving K� only gives

the following result.

1.6. Theorem. Suppose that a Beltrami coeÆcient � on C satis�esZZ
C

eH(K�(z))
dxdy

(1 + jzj2)2 < +1

for a measurable function H : [1;+1)! R for which there exist an integer n � 1

and numbers c > 0; � 2 (�1; 1] such that H(t) � ct=(log t)(log2 t) � � � (logn�1 t)(logn t)�
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when t is large enough. Then there exists a homeomorphic solution f : C ! C to

the Beltrami equation with � such that f 2 W 1;q
loc (C ) for every 1 � q < 2 and that

f�1 2 W 1;2
loc (C ): Moreover, if � < 1 and if 0 < � in the case n = 1 in addition, f

satis�es the inequality

jf(z)� f(z0)j � C exp

0@ �c
2(1� �)

 
logn+1

1

jz � z0j

!1��
1A ; jz � z0j < Æ0;

where the constants C > 0 and Æ0 > 0 can be taken locally uniformly. In the case

when n = 1 and � � 0; the above inequality still holds if the constant c=(2(1��))
is replaced by any larger number than it.

Here, logn denotes the iterated logarithm, see Section 5. Examples show that

this result is close to being optimal. Indeed, for each n; one cannot admit �

to be greater than 1 in the integrability condition above. Moreover, the con-

stant c=(2(1� �)) and the exponent 1� � in the above estimate for modulus of

continuity cannot be replaced by smaller ones.

This paper is organized as follows. In Section 2, we give modulus estimates for

ring domains and establish normality theorems for some families of homeomor-

phisms to prove Theorem 2.15. The existence theorems, modulus of continuity

estimates and examples are collected in Section 3. Section 4 is devoted to unique-

ness theorems. We provide basic examples for dominating factors and modulus

bounds, which are used to formulate our existence and uniqueness theorems, and

give a proof of Theorem 1.6 in Section 5.

2. Sequences of Self-Homeomorphisms

The degenerate Beltrami equation need not have a homeomorphic solution nor

even a nonconstant solution. A usual approach for the existence of a solution

is to consider a sequence fn of quasiconformal homeomorphisms satisfying (1.1)

with the Beltrami coeÆcient �n; k�nk1 < 1; such that �n ! � a.e. and then

to use a normal family argument to obtain a limit mapping f: Some conditions

must be imposed on � in order to guarantee the normality.

In the following we introduce a modulus method to study normal families of
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homeomorphisms. This will be employed to prove the solvability problem of the

degenerated Beltrami equation, however, the method is of independent interest.

We introduce some notation. We denote the Euclidean distance and the

spherical distance between z and w by d(z; w) = jz � wj and d](z; w) = jz �
wj=

q
(1 + jzj2)(1 + jwj2); respectively. Also we denote by A(z0; r; R) and by

A](z0; r; R) the (circular) annuli in the Euclidean and the spherical metric, re-

spectively, i.e.,

A(z0; r; R) = B(z0; R) nB(z0; r) and A](z0; r; R) = B](z0; R) nB]
(z0; r)

for z0 2 bC and 0 � r < R; where B(z0; r) = fz 2 C : jz � z0j < rg and

B](z0; r) = fz 2 bC : d](z; z0) < rg: Here, in the case when z0 = 1; we set

B(1; r) = fz 2 bC : jzj > 1=rg; and hence, A(1; r; R) = A(0; 1=R; 1=r): In

the sequel, for subsets E;E0; E1 of bC ; diamE and dist(E0; E1) stand for the

diameter of E and the distance between E0 and E1; respectively, measured in the

Euclidean metric d: Similarly, diam]E and dist](E0; E1) stand for those measured

in the spherical metric d]: We also denote by A and A] the two dimensional

Lebesgue measure and the spherical measure, respectively, i.e., A(E) =
Z
E

Z
dxdy

and A](E) =
Z
E

Z
(1 + jzj2)�2dxdy:

A doubly connected domain is called a ring domain. The modulus m of a

ring domain A is the number such that A is conformally equivalent to f1 <

jzj < emg and will be denoted by modA: When A is conformally equivalent

to C � = C n f0g; we de�ne modA = 1: A non-negative function �(z; r; R) in

(z; r; R) 2 bC � (0;+1)� (0;+1); r < R; will be called a modulus constraint if

�(z0; r; R)! +1 as r ! 0 for any �xed R 2 (0;+1) and z0 2 bC :
We denote by H� the family of all normalized homeomorphisms f : bC ! bC

such that the condition

mod f(A(z0; r; R)) � �(z0; r; R)

holds for all z0 2 bC and r; R 2 (0;+1) with r < R: Here and hereafter, a

homeomorphism f : bC ! bC is said to be normalized if f �xes 0; 1 and 1: Note

that this condition is not M�obius invariant.
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Note also that, without changing the family H�; we may assume the mono-

tonicity condition �(z0; r1; R1) � �(z0; r2; R2) for z0 2 bC and r2 � r1 < R1 � R2

by replacing � by a suitable one.

Similarly, a non-negative function �](z; r; R) in (z; r; R) 2 bC �(0; 1)�(0; 1); r <
R; will be called a spherical modulus constraint if the same set of conditions is

satis�ed for �]: We let H]
�] be the family of all normalized self-homeomorphisms

f such that mod f(A](z0; r; R)) � �](z0; r; R) holds for all z0; r; R:

A family of continuous functions is said to be pre-normal or normal if it is

relatively compact or compact, respectively, with respect to the topology of local

uniform convergence.

Now we are ready to state our main propositions. A similar statement can

be found in Lehto's paper [14] under stronger assumptions (see also Lemma 1 in

Section 4 of [6]).

2.1. Proposition. Let �] be a spherical modulus constraint. Then

1) H]
�] is a normal family with respect to the uniform convergence in bC ; and

2) every f 2 H]
�] satis�es the inequality

d](f(z1); f(z2)) � Ce�
1

2
�](z0;r1;r2); z1; z2 2 B](z0; r1);(2.2)

for z0 2 bC and 0 < r1 < r2 < 1=2
p
2; where C is an absolute constant.

2.3. Proposition. Let � be a modulus constraint. Then

1) H� is a normal family with respect to the uniform convergence in bC ; and
2) for each R > 0 there is a constant C = C(R; �) > 0 depending only on R

and � such that every f 2 H� satis�es

jf(z1)� f(z2)j � Ce��(z0;r1;r2); z1; z2 2 B(z0; r1);(2.4)

for jz0j � R and 0 < r1 < r2 < R:

For the proof of these propositions we need auxiliary lemmas. The �rst one

is shown by applying the famous Teichm�uller's lemma on his extremal ring

domain. See, for example, [10], where the authors assert that we can take

C0 = ��1 log 2(1 +
p
2) = 0:50118 : : : below.
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2.5. Lemma. There exists a universal constant C0 > 0 with the property

that for a ring domain B in C with modB > C0 which separates a point z0 from

1 we can choose an annulus A in B of the form A = A(z0; r1; r2); r1 < r2; so

that modA � modB � C0 holds.

We need information about the size of components of the complement of a ring

domain of suÆciently large modulus. There are several kinds of such estimates,

among which the following form due to Lehto-Virtanen [15, Lemma I.6.1] is

probably best known. Let B be a ring domain whose complement in bC consists

of continua E0 and E1: Then

minfdiam]E0; diam
]E1g � �p

2modB
:

This inequality is very explicit, however, the order in modB is not best possible.

So, we prepare the following result where the order in modB is the best.

2.6. Lemma. Let B be an arbitrary ring domain in bC and let E0 and E1

be the components of bC nB: Then the inequality

minfdiam]E0; diam
]E1g � C1e

� 1

2
modB

holds, where C1 is an absolute constant.

Proof. We may assume that 1 2 E1: Then, we get the desired conclusion

by combining Lemma 2.5 with the following elementary but sharp result. In

particular, we can use the value C1 = 2eC0=2 = 2:56957 : : : :

2.7. Lemma. Let A be an annulus in bC whose complement consists of dis-

joint closed disks E0 and E1: Then

minfdiam]E0; diam
]E1g � 1

cosh(1
2
modA)

:

Equality holds if and only if diam]E0 = diam]E1 and if the spherical centers of

E0 and E1 are antipodal.

Proof. If diam]Ej > diam]E1�j for some j = 0; 1; we can decrease diam]Ej

a little while leaving diam]E1�j and minfdiam]E0; diam
]E1g invariant, then the

resulting annulus will have larger modulus. Hence, using this argument, we
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may assume diam]E0 = diam]E1 without loss of generality. After a suitable

isometric M�obius transformation with respect to the spherical metric, we can

further assume that E0 and E1 are symmetric in the imaginary axis and that the

center of E0 is a positive real number. Let E0\R = [r; R] and Æ be the hyperbolic

diameter of E0 in the hyperbolic plane H = fz : Re z > 0g: Note that

Æ =
Z R

r

dx

2x
=

1

2
log

R

r
= log t;

where we set t =
q
R=r = eÆ > 1: Since H n E0 is M�obius equivalent to the

annulus A(0; tanh(Æ=2); 1); we can compute the modulus of A as follows;

modA = 2mod (H n E0) = 2 log coth
Æ

2
= 2 log

t + 1

t� 1
:

In particular, we have t = coth(m=2); where we set m = modA=2: On the other

hand,

diam]E0 = d](r; R) =
R� rp

1 +R2
p
1 + r2

=
(t2 � 1)rp

1 + t4r2
p
1 + r2

=
t2 � 1p

1 + t4 + r�2 + t4r2
� t2 � 1p

1 + t4 + 2t2
=
t2 � 1

t2 + 1

=
coth2(m=2)� 1

coth2(m=2) + 1
=

1

coshm
;

where equality holds if and only if rt = 1; equivalently, rR = 1: The last relation

means that the spherical center of E0 is 1 and vice versa. In this case, the

spherical center of E1 is �1; which is the antipode of 1: Hence, the last assertion

of the lemma follows.

Lemma 2.6 has the best order in modB; however, if we restrict ourselves to

ring domains in the �nite plane C ; the order is no longer best possible. The

following estimate has the best order in modB in this case, though the extra

factor dist(E0; E1) will come into.

2.8. Lemma. Let B be a ring domain in C whose complement in bC consists

of the bounded component E0 and the unbounded component E1: If modB > C2;

we have the estimate

diamE0 � C3 dist(E0; E1)e
�modB;

where C2 and C3 are positive absolute constants.



V. Gutlyanski��, O. Martio, T. Sugawa and M. Vuorinen 9

Proof. We may assume that dist(E0; E1) = 1; 0 2 E0 and 1 2 E1: Let a be an

arbitrary point in E0 other than 0: Then, by Teichm�uller's modulus theorem (see

[15]), we have

modB � 2�

0@
vuut jaj
1 + jaj

1A ;
where �(r) denotes the modulus of the Gr�otszch ring B(0; 1) n [0; r]: Using the

well-known estimate �(r) < log(4=r); we obtain

jaj � 16

emodB � 16
� 32e�modB

if modB > 5 log 2: Hence, we obtain diamE0 � 64e�modB whenever modB >

5 log 2: In particular, the assertion holds for C2 = 5 log 2 and C3 = 64:

Proof of Proposition 2.1. Observe �rst that d](0; 1) = d](1;1) = 1=
p
2

and that d](0;1) = 1: In particular, when r2 < 1=2
p
2; the disk B = B](z0; r2)

cannot contain more than one of the three �xed points 0; 1;1: Therefore, the

component bC n f(B) of the complement of f(A](z0; r1; r2)) has diameter at least

1=
p
2: Therefore, if the modulus of f(A](z0; r1; r2)) is suÆciently large, the im-

age of the disk B
]
(z0; r1) must be the smaller component of the complement of

f(A](z0; r1; r2)): Now inequality (2.2) follows from Lemma 2.6. This inequal-

ity in turn implies the equicontinuity of H]
�] : Since

bC is compact, then by the

Ascoli-Arzela theorem, the family H]
�] is normal.

Let f be the uniform limit of a sequence fn in H]
�] : We show that f is a

member of H]
�] : Since f is the uniform limit of homeomorphisms fn; we have

deg f = limdeg fn = 1: In particular, f : bC ! bC is a surjective continuous map.

We now consider the open set

V = fz 2 bC ; f is locally constant at zg:

First we show the following

Claim. If z0 2 bC n V; then f(z) 6= f(z0) for any z 2 bC n fz0g:
By permuting the roles of 0; 1;1 if necessary, we may assume that z0 6= 1

and that f(z0) 6=1: Pick any point w0 other than z0:We will show that f(w0) 6=
f(z0): Choose a small positive number R so that R < minfd](z0; w0); d

](z0;1)g:
Then infnmod (fn(A

](z0; Æ; R))) > C0 for suÆciently small Æ > 0; where C0 is

the constant in Lemma 2.6. By virtue of Lemma 2.6, we can �nd an annulus An

of the form A(fn(z0); rn; r
0
n); rn < r0n in fn(A

](z0; Æ; R)) for n large enough.
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Since f is not locally constant at z0; there exists a point z1 in the disk

d](z; z0) < Æ with f(z0) 6= f(z1): The annulus An separates fn(z0); fn(z1) from

fn(w0);1; so we obtain jfn(z1)�fn(z0)j � rn and r
0
n � jfn(w0)�fn(z0)j: In par-

ticular, jfn(z1)� fn(z0)j � jfn(w0)� fn(z0)j for n large enough. Letting n!1;

we obtain 0 < jf(z1)� f(z0)j � jf(w0)� f(z0)j; and hence f(w0) 6= f(z0):

We next show that V is empty. Suppose that V has a non-empty connected

component V0: Then f takes a constant value, say b; in V0: Because V0 6= bC ; we
can take a point z0 from @V0: By continuity, we have f(z0) = b: On the other

hand, from the above Claim, we can deduce that f(z) 6= f(z0) = b for any point

z other than z0; which contradicts the fact that f = b in V0: Thus we conclude

that V is empty, namely, f is not locally constant at any point.

By using Claim again, we obtain f(z1) 6= f(z2) if z1 6= z2: Thus, the injectivity

of f follows. Finally, by the continuity of moduli of ring domains with respect to

the Hausdor� convergence (see [15]), we conclude that f 2 H]
�] :

Proof of Proposition 2.3. It is easy to see that there is a spherical modulus

constraint �] such that H� � H]
�] : From Proposition 2.1, the normality of H�

now follows. We next give an estimate of dist(E0; E1); where E0 and E1 are the

bounded and unbounded components of bC nf(A); A = A(z0; r1; r2); respectively.

Since H� is normal, S = supfjg(z)j : g 2 H�; jzj � 2Rg < +1: Now it is clear

that dist(E0; E1) � diam f(@B(z0; r2)) � 2S: Set m = mod f(A): If m > C2; we

obtain diamE0 � 2SC3e
�m by Lemma 2.8. Otherwise, we have diamE0 � 2S �

2SeC2e�m: Hence, the proof is complete.

Let � be a Beltrami coeÆcient de�ned in C with k�k1 � 1: In order to

apply Proposition 2.3 to the study of the Beltrami equation, we �rst specify an

approximation procedure. This is done in a standard way. For n = 1; 2; :::; we

set

�n(z) = �(z); if j�(z)j � 1� 1=n;(2.9)

and �n(z) = 0 otherwise, and denote by fn the sequence of quasiconformal au-

tomorphisms of the extended complex plane preserving 0; 1 and 1; and having

�n as its complex dilatation. The existence of such fn is guaranteed by the

measurable Riemann mapping theorem. We will call such fn the canonical ap-

proximating sequence for �: The topological structure of the set fn with respect
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to the uniform convergence under some additional assumptions on the generating

coeÆcient � will be described in Theorem 2.15.

A function H : [0;+1) ! R is called a dominating factor if the following

conditions are satis�ed;

1. H(x) is continuous and strictly increasing in [x0;+1) and H(x) = H(x0)

for x 2 [0; x0] for some x0 � 0; and

2. the function eH(x) is convex in x 2 [0;+1):

The convexity of eH implies that H(x) ! +1 as x ! +1: In the sequel, the

inverse H�1 of H will mean the inverse of the homeomorphism H : [x0;+1)!
[H(0);+1):

A dominating factor H is said to be of divergence type ifZ +1

1

H(x)dx

x2
= +1;(2.10)

and otherwise H is said to be of convergence type. Denote by D the set of all

dominating factors of divergence type. Note that H(�x) and �H(x) are dominat-

ing factors of the same type as H(x) if H(x) is a dominating factor and if � is a

positive constant. The following is the most important feature of the divergence

condition (2.10).

2.11. Lemma. Let H be a dominating factor. Then H is of divergence type

if and only if Z +1

t1

dt

H�1(t)
= +1(2.12)

for a suÆciently large number t1:

Proof. By the change of variables t = H(x) and integration by parts, we seeZ t2

t1

dt

H�1(t)
=
Z x2

x1

dH(x)

x
=
H(x2)

x2
� H(x1)

x1
+
Z x2

x1

H(x)dx

x2
;

where tj = H(xj) for j = 1; 2: Noting that H(x)=x is positive for x large enough,

we easily get to the \only if " part. In order to show the \if " part, assume

that (2.10) fails. Then, in view of the above identity, (2.12) would imply that

H(x)=x ! 1 if x ! 1: In particular, H(x)=x > C > 0 holds for suÆciently

large x; where C is a positive constant. Hence, letting x1 be large enough, we

would see that
R x2
x1
H(x)dx=x2 >

R x2
x1
C dx=x = C log(x2=x1) ! 1 as x ! 1;

which is a contradiction. Thus, (2.10) follows.
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Let � 2 L1(
) be a Beltrami coeÆcient with j�j < 1 a.e. in an open subset


 of bC : We de�ne the angular dilatation D�;z0 of � at z0 2 bC by

D�;z0(z) =

���1� �(z) �z��z0
z�z0

���2
1� j�(z)j2(2.13)

in the case when z0 is �nite, and by D�;1(z) = D�;0(z) in the case when z0 =1:

Then D�;z0 is a measurable function in 
 and satis�es the inequality 1=K�(z) �
D�;z0(z) � K�(z) a.e. for each z0 2 bC : Note that D�;0(z) = K�(z) holds a.e. if and

only if �(z) has the form ��(z)z=�z for a non-negative measurable function �: The

name of D�;z0 comes from the following important relation: if f is �-conformal

in 
 and if we write z = z0 + rei�; then

�����@f@� (z)
�����
2

= r2D�;z0(z)Jf (z)(2.14)

holds for almost all z 2 
; where Jf is the Jacobian of f: The similar quantity

D��;z0 is called the radial dilatation of � at z0 because the counterpart of the

above relation can be obtained:�����@f@r (z)
�����
2

= D��;z0(z)Jf(z):

These are called directional dilatations.

2.15. Theorem. Let � be a Beltrami coeÆcient in C : Assume that, for each

z0 2 bC ; one of the following conditions holds for some positive constants M =

M(z0) and r0 = r0(z0) :

1) D�;z0(z) � M a.e. in B(z0; r0);

2) There is a dominating factor H = Hz0 of divergence type such that

Z
B(z0;r0)

eH(D�;z0 (z))dA(z) �M

holds for z0 2 C ; while the above condition is replaced by

Z
B(1;r0)

eH(D�;0(z))
dA(z)
jzj4 �M

if z0 =1:
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Then the canonical approximating sequence fn for � forms a pre-normal family

with respect to the uniform convergence in bC and every limit function f of this

sequence is a self-homeomorphism of bC ; and admits the following modulus of

continuity estimates according to cases 1) or 2) at each point z0 with jz0j � R0;

where R0 is an arbitrary positive number:

jf(z)� f(z0)j � Cjz � z0j1=M(2.16)

or

jf(z)� f(z0)j � C exp

(
�
Z 2m+c

1+c

dt

2H�1(t)

)
;(2.17)

respectively, for jz � z0j < r1 and 0 < r1 � minfr0; R0g; where m = log(r1=jz �
z0j); c = log(M=�r21) and C is a constant depending only on � and R0:

2.18. Remark. This theorem does not tell anything about the regularity of

the limit mapping f nor the existence of �-conformal homeomorphisms. At the

moment, the following can be said at least. Let Sing(�) be the singular set of a

Beltrami coeÆcient �; i.e.,

Sing(�) = fz0 2 bC : k�kL1(B(z0;r)) = 1 for any r > 0g:

Note that Sing(�) is a compact set in bC : Note also that Sing(�) can have positive
area although j�j is always assumed to be less than 1 almost everywhere. Let


 = bC n Sing(�): Then, by construction, f is locally quasiconformal in 
 and

its complex dilatation agrees with the given � a.e. and f j
 is unique up to the

post-composition by a conformal map. Further discussions on the existence of �-

conformal homeomorphisms and their regularity will be made in the next section.

The proof of the theorem is based on Proposition 2.3 and the estimate for the

change of moduli of ring domains under homeomorphisms in the Sobolev space

W 1;1
loc stated in the lemmas below.

The �rst result is essentially due to [2] and [19] and is given now under some-

what weaker assumptions.

2.19. Lemma. Let � be a Beltrami coeÆcient on a domain 
 in C and

f : 
! C be a �-conformal embedding. Suppose that D�;z0(z) is locally integrable

in the annulus A = A(z0; r1; r2) � 
: Then

mod f(A) �
Z r2

r1

dr

r �(r; z0)
;(2.20)
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where

 �(r; z0) =
1

2�

Z 2�

0
D�;z0(z0 + rei�)d�:(2.21)

Proof. We may assume that z0 = 0 and 
 = A = A(0; 1; R): Compos-

ing a suitable conformal mapping, we may further assume that A0 = f(A) =

A(0; 1; R0): Let � be the positive Borel measure on A de�ned by �(E) = A(f(E)):
By a usual argument (see, e.g., [1] or [15]), we obtain JfdA � d� on A in the

sense of measure, where Jf = jfzj2 � jf�zj2: In particular, Jf 2 L1
loc(A):

Denote by r the circle jzj = r: Then the assumption f 2 W 1;1
loc (A) together

with the Gehring-Lehto theorem (see [15]) implies that f is absolutely continuous

on r and totally di�erentiable at every point in r except for a set of linear

measure 0 for almost all r 2 (1; R): By Fubini's theorem, we observe that D�

and Jf are integrable on r for almost all r 2 (1; R): For such an r; we have

2� �
Z
r
jd arg f j �

Z
r

jdf(z)j
jf(z)j =

Z 2�

0

jf�(rei�)j
jf(rei�)j d�:

Taking (2.14) into account, we use Schwarz's inequality to obtain

(2�)2 � r2
Z 2�

0
D�(re

i�)d�
Z 2�

0

Jf
jf j2 (re

i�)d�;

and hence
2�

r �(r)
� r

Z 2�

0

Jf
jf j2 (re

i�)d�

for almost all r 2 (1; R); where  �(r) =  �(r; 0): Integrating both sides with

respect to r from 1 to R; we obtain

2�
Z R

1

dr

r �(r)
�
Z R

1

Z 2�

0

Jf
jf j2rd�dr =

Z
A

JfdA
jf j2

�
Z
A

d�

jf j2 =
Z
A0

dA(w)
jwj2 = 2� logR0 = 2�mod A0

and thus arrive at the required inequality (2.20).

The following auxiliary result may be of independent interest. The basic idea

is due to Brakalova-Jenkins [6], see also [17, p. 51].

2.22. Lemma. Let f be a �-conformal embedding of A = A(z0; r0e
�m; r0)

into C : Suppose that a dominating factor H satis�esZ
A
eH(D�;z0 (z))dA(z) �M; if z0 2 C ; and

Z
A
eH(D�;0(z))

dA(z)
jzj4 �M; if z0 =1:

(2.23)
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Then we have

mod f(A(z0; r0e
�m; r0)) �

Z m

1=2

dt

H�1(2t+ log(M=�r20))
(2.24)

Proof. Let �rst z0 6=1: Setting

h(r) =
r2

2�

Z 2�

0
eH(D�;z0 (z0+re

i�))d�;

we rewrite inequality (2.23) in the form

2�
Z r0

r0e�m
h(r)

dr

r
= 2�

Z m

0
h(r0e

�t)dt �M:

By Chebyshev's inequality, the set T = ft 2 (0; m) : h(r0e
�t)) > Lg has the

length

jT j =
Z
T
dt � M

2�L
:

Since eH is a convex function, Jensen's inequality yields eH( (r)) � h(r)=r2 where

 (r) =  �(r; z0): This implies the inequality  (r0e
�t) � H�1(2t+ log(L=r20)) for

t 2 (0; m) n T: By Lemma 2.19 we get

mod f(A) �
Z m

0

dt

 (r0e�t)
�
Z
(0;m)nT

dt

H�1(2t+ log(L=r20))

�
Z m

jT j

dt

H�1(2t+ log(L=r20))
�
Z m

M=2�L

dt

H�1(2t+ log(L=r20))
:

Finally, letting L =M=�; we obtain (2.24).

The remaining case is that z0 = 1: Let '(z) = 1=z be the inversion. Let �̂

be the complex dilatation of the map g = ' Æ f Æ ': Then D�̂;0(z) = D�;0(1=z):

Now the required inequality immediately follows from the previous one.

Proof of Theorem 2.15. Let fn be the canonical approximating sequence

for �: Suppose that � satis�es assumption 2) at z0 2 C : Since

H ÆD�n;z0(z) � max fH ÆD�;z0(z); H(1)g(2.25)

for the dominating factor H; the sequence

Mn =
Z
B(z0 ;r0)

eH(D�n;z0(z))dA(z)(2.26)

satis�es

lim
n!1

Mn =
Z
B(z0;r0)

eH(D�;z0 (z))dA(z) �M =M(z0)
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by Lebesgue's dominating convergence theorem. We now see by Lemma 2.22

that

mod fn(A(z0; re
�m; r)) �

Z m

1=2

dt

H�1(2t+ log(Mn=�r2))
=: �n(z0; re

�m; r)

for 0 < r � r0 and m > 1=2: Set �̂n = inff�k; k � ng: Then, by virtue of Lemma

2.11, �̂n(z0; re
�m; r)!1 as m! +1: For z0 =1 the same conclusion follows.

In the case when � satis�es assumption 1), the situation is simpler. Since

 �(r; z0) �M for a.e. 0 < r < r0; by Lemma 2.19, we obtain mod fn(A(z0; re
�m; r)) �

m=M for 0 < r � r0 and m > 0; so we just set �̂n(z0; re
�m; r) = m=M in this

case. For the other points (z0; r; R); we simply set �̂n(z0; r; R) = 0:

The sequence fk; k � n; then belongs to the class H�̂n for each n; and hence

is normal by Proposition 2.3. Let f be a limit function of the sequence fk:

We show the estimates of modulus of continuity of f: Since case 1) is easier to

treat, we consider only case 2). Letting n ! 1; we obtain f 2 H�1; where

�1 = lim infn!1 �n: By Proposition 2.3, we have

jf(z)� f(z0)j � C exp (� �1(z0; r1e
�m; r1))

for jz � z0j � r1e
�m; jz0j � R0 and r1 � minfr0; R0g; where C is a constant

depending only on � and R0: Letting jz � z0j = r1e
�m; we obtain (2.17) by

mod f(A(z0; r1e
�m; r1)) � �1(z0; r1e

�m; r1) �
Z 2m+c

1+c

dt

H�1(t)
;

where c = log(M=�r21):

3. Existence Theorems

In order to give some applications of Theorem 2.15 to the study of the degen-

erate Beltrami equation we need the well-known regularity results, see, e.g., [6],

Lemmas 4 { 6 and Proposition 10, and also [18], [17].

3.1. Proposition. Let � be a Beltrami coeÆcient in C and suppose that a

homeomorphism f : bC ! bC is a uniform limit of the canonical approximating

sequence fn for �: If K� 2 Lploc(C ) for some p > 1; then f 2 W 1;q
loc (C ); q =

2p=(1+p); and f satis�es the Beltrami equation with �:Moreover, f�1 2 W 1;2
loc (C ):
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3.2. Remark. It is shown in [6, Lemma 3] that K� 2 L1
loc(C ) implies the

ACL property of f:

3.3. Remark. The Sobolev embedding theorem for spheres [16] or Gehring's

oscillation inequality, see, e.g., [11, Lemma 5.2], implies that if f : C ! C is a

�-conformal homeomorphism with K� 2 L1
loc(C ); then for every compact set E

in C there exist constants C and a such that

jf(z1)� f(z2)j � C e�a=jz1�z2j
2

(3.4)

for z1; z2 2 E with z1 6= z2: The same inequality is also obtained in [22, p. 75] as

a consequence of the Length-Area principle.

Proposition 2.1 together with Theorem 2.15 yields the following statement.

3.5. Theorem. Suppose that � is a Beltrami coeÆcient in C such that:

1) K� 2 Lploc(C ) for some p > 1; and

2) for each point z0 2 bC either D�;z0 �M a.e. in B(z0; r0) orZ
B(z0;r0)

eH(D�;z0 (z))dA(z) � M; if z0 2 C ; and

Z
B(1;r0)

eH(D�;0(z))
dA(z)
jzj4 �M; if z0 =1

(3.6)

for some dominating factor H = Hz0 of divergence type and positive con-

stants M =M(z0) and r0 = r0(z0):

Then there exists a normalized homeomorphic solution f : bC ! bC of (1.1) such

that f 2 W 1;q
loc (C ); q = 2p=(1 + p); and f�1 2 W 1;2

loc (C ): This homeomorphism

admits the modulus of continuity estimate jf(z)� f(z0)j � Cjz � z0j1=M or

jf(z)� f(z0)j � C exp

(
�1

2

Z 2m+c

1+c

dt

H�1
z0 (t)

)
;(3.7)

respectively, for jz � z0j < r1; jz0j � R0 and r1 � minfr0(z0); R0g; where m =

log(r1=jz � z0j); c = log(M(z0)=�r
2
1); R0 is a �xed number and C is a constant

depending only on � and R0:

Proof. Let fn be the canonical approximating sequence corresponding to the

Beltrami coeÆcient �: From Theorem 2.15 we see that fn forms a pre-compact
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family with respect to the uniform convergence in bC and every limit function f of

this family is a self-homeomorphism of bC : Passing to subsequence, we may assume

that fn ! f uniformly in bC and �n ! � a.e. as n ! 1: Since K� 2 Lploc(C )

for some p > 1; we see by Proposition 3.1 that f 2 W 1;q
loc (C ); q = 2p=(1 + p)

and f satis�es (1.1). Moreover, f�1n ! f�1 uniformly in bC as n ! 1 and

f�1 2 W 1;2
loc (C ): The modulus of continuity estimate in (3.7) follows from Theorem

2.15.

3.8. Remark. Assumption 2) in Theorem 3.5 implies D�;z0 2 Lp(B(z0; r0))
for all p > 1: Assumption 1), however, cannot be dropped in order to have the

regularity condition f 2 W 1;1
loc (C ): Indeed, for �(z) = (1+ijzj2)�1z=�z; jzj < 1 and

�(z) = 0; jzj > 1; the normalized �-conformal homeomorphism f : bC ! bC has

the form f(z) = zei(1=jzj
2�1); jzj < 1 and f(z) = z; jzj � 1: A simple calculation

shows that D�;0(z) = 1 a.e. in C ; and therefore D�;z0 is bounded near z0 for

each z0 2 bC : Hence, assumption 2) is ful�lled, but jf�zj = 1=jzj2 is not locally

integrable near the origin, and thus f =2 W 1;1
loc (C ): Note that K�(z) � 1=jzj4 and

hence K� =2 L1
loc(C ):

Note also that assumption 1) can be stated in terms of the radial dilatation of

�: In fact, we can replace it by the condition that D��;z0 belongs to L
p(B(z0; r0))

for each �nite z0; where p > 1 is a �xed number. To see the equivalence, we have

only to note the relation

K�

2
� D�;z0 +D��;z0 =

1 + j�j2
1� j�j2 � K�:

Specifying the dominating factor H(x) we obtain more concrete consequences

from Theorem 3.5. Typical examples are �x and �x=(1 + log+ x) for a positive

constant �: The assumptions corresponding to (3.6) can be described by the local

exponential integrability conditionZ
B(z0;r0)

e�D�;z0 (z)dA](z) < +1(3.9)

and by the local subexponential integrability conditionZ
B(z0;r0)

exp

(
�D�;z0(z)

1 + log+D�;z0(z)

)
dA](z) < +1(3.10)

for the angular dilatation coeÆcient D�;z0(z): More examples will be given in

Section 5.
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The following result can be viewed as an extended version of the corresponding

existence theorems from [6] and [11].

3.11. Theorem. Let H be a dominating factor of divergence type. Suppose

that a Beltrami coeÆcient � on C with k�k1 � 1 satis�esZ
C

eH(K�(z))dA](z) < +1;(3.12)

where dA](z) = (1+ jzj2)�2dA(z) denotes the spherical area element. Then there

exists a normalized homeomorphic solution f to the Beltrami equation with �

such that f 2 W 1;q
loc (C ) for every 1 � q < 2 and that f�1 2 W 1;2

loc (C ):

Proof. Since H is of divergence type, assumption (3.12) implies that K� 2
Lploc(C ) for every 1 < p <1: On the other hand, the inequality D�;z0(z) � K(z)

a.e. and the convergence of the integral (3.12) imply the local assumption (3.6).

Hence, by Theorem 3.5, we have the required conclusion.

3.13. Remark. Condition (3.12) is optimal for the solvability of Beltrami

equations in the following sense.

Assume that H is a dominating factor of convergence type. We may assume

that H is smooth enough and H(1) = 1: Then, by Theorem 3.1 of [11], there

exists a � satisfying (3.12) for which the following holds:

1. � = 0 o� the unit disk B;

2. K� is locally essentially bounded in C n f0g;
3. there are no W 1;1

loc -solutions to the Beltrami equation with � in the unit disk

which are continuous at the origin other than constant functions, and

4. there is a solution f to the Beltrami equation in the weak-W 1;2(B) Sobolev

space, where weak-W 1;2(B) =
\

1�q<2

W 1;q(B); which maps the punctured

disk B n f0g homeomorphically onto the annulus A(0; 1; R) for some 1 <

R < +1:

3.14. Corollary. Suppose that � is a Beltrami coeÆcient in C such that for

some � > 0 Z
C

e�K�(z)dA](z) < +1:(3.15)
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Then there exists a �-conformal homeomorphism f : bC ! bC such that f 2
W 1;q

loc (C ) for every q < 2 and f�1 2 W 1;2
loc (C ): Moreover, for every compact set

E � C there are positive constants C;C 0 and a such that

C exp

 
� a

jz1 � z2j2
!
� jf(z1)� f(z2)j � C 0

�����log 1

jz1 � z2j

�����
��=2

(3.16)

for z1; z2 2 E with 0 < jz1 � z2j < 1=e: The exponent ��=2 is sharp.

The right hand side of (3.16) can be written in the more precise form

jf(z1)� f(z2)j � C dist(E0; E1)

 
1 + log(M=�R2)

log 1=jz1 � z2j

!�=2

for z1; z2 2 B(0; R=2) with jz1 � z2j < 1=e where

M =
Z
B(0;R)

e�K�dA;

E0 = f(B(0; R=2)); E1 = f(bC nB(0; R)) and C is a constant depending only on

�:

The sharpness can be seen by the following examples. Let f : C ! C be the

radial stretching de�ned by

f(z) =
z

jzj

 
1 +

2

�
log

1

jzj

!��=2
(3.17)

for jzj � 1 and f(z) = z for jzj > 1: (This example was given in [11, x11.1].)
Then K(z) = 1+(2=�) log(1=jzj) for jzj < 1: Hence integrability condition (3.15)

holds for � > � but not for � � �: Since jf(z)�f(0)j = (1+2��1 log 1=jzj)��=2 �
(log 1=jzj)��=2 as z ! 0; the exponent �=2 in (3.16) cannot be replaced by any

larger number.

3.18. Remark. It is noted in [3] that a necessary and suÆcient condition

for a measurable function K(z) � 1 to be majorized in 
 � C by a function

M 2 BMO(C ) is that Z


e�K(z)dA](z) < +1(3.19)

for some positive number �: Moreover, M can be chosen so that kMkBMO � C=�

where C is an absolute constant. For mappings of BMO-bounded distortion

David [8] has proved the estimate
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jf(z1)� f(z2)j � A

�����log 1

jz1 � z2j

�����
�b=kMkBMO

(3.20)

for some positive constant b; which agrees with our modulus estimate (3.16).

3.21. Remark. It is shown in [11] that if � has a compact support, then

there exists a number �0 > 1 such that the Beltrami equation with � satisfying

(3.15) with � � �0 admits a unique principal solution f with f(z)� z 2 W 1;2(C ).

The following consequence is due to [11, Theorem 14.2] except for the modulus

of continuity estimate. The almost same result has been obtained by [6] earlier

(see the remark below).

3.22. Corollary. Suppose that � is a Beltrami coeÆcient in C such that

Z
C

exp

(
�K(z)

1 + logK(z)

)
dA](z) <1(3.23)

for some � > 0: Then there exists a homeomorphic solution f in bC to (1.1)

such that f 2 W 1;q
loc (C ) for every q < 2 and f�1 2 W 1;2

loc (C ): Moreover, for every

compact set E � C there are constants C; C 0 and a such that

C exp

(
� a

jz1 � z2j2
)
� jf(z1)� f(z2)j � C 0

 
log log

1

jz1 � z2j

!��=2
(3.24)

for z1; z2 2 E with 0 < jz1 � z2j < e�e: The exponent ��=2 is sharp.

The modulus of continuity follows from the fact that ��1y log y < H�1(y) for

suÆciently large y where H(x) = �x=(1 + log+ x): More precisely, we have an

estimate in the following form:

jf(z1)� f(z2)j � C dist(E0; E1)

 
log log(M=�R2)

log log(1=jz1 � z2j)

!�=2

for z1; z2 2 B(0; R=2) with jz1 � z2j < e�e; where

M =
Z
B(0;R)

exp

(
�K(z)

1 + logK(z)

)
dA(z);

E0 = f(B(0; R=2)); E1 = f(bC nB(0; R)) and C is a constant depending only on

�:
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Next we show the sharpness by examples. Let f : C ! C be the radial

stretching de�ned by

f(z) =
z

jzj

 
1 +

2

�
log log

e

jzj

!��=2
(3.25)

for jzj � 1 and f(z) = z for jzj > 1: Then K(z) = log e
jzj

�
1 + 2

�
log log e

jzj

�
for

jzj < 1: (This example appeared in [11, x12.1], however, there seems to be an

error in the formula for K(z):) Hence

K(z)

1 + logK(z)
=

2

�
log

e

jzj

 
1� log3 e=jzj

log2 e=jzj
+O

 
1

log2 e=jzj

!!

as z ! 0 and, in particular, we can see that expf�K(z)=(1 + logK(z))g is

integrable in jzj < 1 if and only if � � �: Therefore the exponent �=2 in (3.24)

cannot be replaced by any larger number in general.

3.26. Remark. The �rst proof of the above statement was given in [6] under

the assumption of special behavior of Kf(z) around the point at in�nity:Z
B(0;R)

K(z)dA(z) = O(R2):

This assumption says that K is bounded in the sense of the mean, and hence

it is di�erent from (3.23). Theorem 14.2 in [11] contains also the quite accurate

regularity assertionZ
C

j	(z)j2
log(e+	(z)) log2(3 + 	(z))

dA](z) < +1

where 	(z) stands for the spherical derivative 1+jzj2

1+jf(z)j2
jDf(z)j of f:

Next, we prove Theorem 1.5 given in Introduction, which shows that if Sing(�)

of � is a �nite set then � can be modi�ed without changing its absolute value

and the modi�ed � admits a \good" solution. For the convenience of the reader,

we recall it in the following more concrete form.

Claim. Let �(z) be a Beltrami coeÆcient in bC such that Sing(�) consists of

�nitely many points fa1; :::; ang � bC : Then there exists a homeomorphism f :bC ! bC which is locally quasiconformal in bC n fa1; :::; ang and whose complex

dilatation �f satis�es

j�f(z)j = j�(z)j a:e:(3.27)
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Proof. Without loss of generality we will assume that all ak's are �nite. Let

Æ be a positive number such that the disks jz � akj � Æ; k = 1; :::; n; are disjoint.

Setting

�0(z) = j�(z)j � z � ak
�z � �ak

; k = 1; :::; n;

for jz � akj � Æ and �0(z) = �(z) otherwise, we see that D�0;z0(z) is essentially

bounded in a suÆciently small disk B(z0; r0) for each z0 2 bC : By Theorem 2.15

there exists a homeomorphism f : bC ! bC which is locally quasiconformal in


 = bC nfa1; :::; ang and f j
 satis�es the Beltrami equation with �0: The condition

(3.27) is immediate by construction.

3.28. Remark. For every H 2 D there exists a homeomorphism f : bC ! bC
locally quasiconformal in bC n fa1; :::; ang with complex dilatation � such thatZ

C

eH(K�(z))dA](z) = +1

but weaker directional condition (3.6) holds.

In the above examples the singular set of � consists of isolated points only.

In the following examples the singular sets of � are the whole extended real axisbR = R [ f1g:

3.29. Example. De�ne the Beltrami coeÆcient � in bC for any �; 1 � � < 2;

by

�(z) = 1� 2

� log 1
jyj

; z = x+ iy;

for jyj � y0 and �(z) = 0 for jyj > y0; where 0 < y0 � e�1=� is a constant. Then

integrability assumption (3.15) with � = 1 does not hold at any neighborhood

of each point on the real axis, whereas assumption (3.9) with � = 1 still holds.

Indeed, since K�(z) = 1 + � log(1=jyj) for jyj < y0; we see that e
K�(z) = ejyj��:

Now the assumption � � 1 implies that eK� is not locally integrable at any point

on the real axis. On the other hand, writing z = rei�; we compute for any a 2 R;

D�;a(z) = D�;0(z) =
1� �

1 + �
+

4�

1 + �
� sin

2 �

1� �
� 1 + � sin2 �

 
log

1

jyj

!
;(3.30)
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where the inequality 4�=(1 + �) � 2 has been used. Since the function x log x is

bounded in (0; 1); we obtain

exp(D�;a(z)) � ejyj�� sin2 � � er��e�
�
2
sin2 � log(sin2 �) � Cr��(3.31)

for some constant C: Hence, for suÆciently small r0 > 0; we have

Z
B(a;r0)

eD�;a(z)dA](z) � 2�C
Z r0

0
r1��dr < +1(3.32)

and the claim follows.

3.33. Example. Another example of Beltrami coeÆcient � in C ; for which

Sing(�) = bR ; is provided by

�(z) = 1� 2

� log 1
jyj
log log 1

jyj

; z = x+ iy;

for jyj � y0 and �(z) = 0 for jyj > y0; where � is a constant with 1 < � <

2e=(e+1) = 1:462 : : : and y0 is a positive constant with y0 � e�e
1=�
: An elementary

computation shows that integrability assumption (3.23) does not hold at any

neighborhood of each point lying on the real axis. On the other hand, assumption

(3.10) still holds. Indeed, since K�(z) = 1+� log(1=jyj) log2(1=jyj); jyj < y0; we

obtain

K�(z)

1 + logK�(z)
=

� log 1
jyj
log2

1
jyj

log2
1
jyj
+ log3

1
jyj

+O(1)
= � log

1

jyj

241 +O

0@ log3 1
jyj

log2
1
jyj

1A35
as y! 0: In particular, we see that eK�(z)=(1+logK�(z)) is not locally integrable at

every point on the real axis. On the other hand, as above, we obtain

D�;0(z) � 1 + � sin2 � log
1

jyj log2
1

jyj:

Hence, under the assumption that � sin2 � log(1=jyj) log2(1=jyj) is large enough,
we have

D�;0(z)

1 + log+D�;0(z)

�
1 + � sin2 � log 1

jyj

h
log(� sin2 � log 1

jyj
log2

1
jyj
)� log(� sin2 � log2

1
jyj
)
i

1 + log(� sin2 � log 1
jyj
log2

1
jyj
)
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= 1 + � sin2 � log
1

jyj �
� sin2 � log 1

jyj

h
log(� sin2 �) + log3

1
jyj

i
1 + log(� sin2 � log 1

jyj
log2

1
jyj
)

� � sin2 � log
1

jyj +
�e�1 log 1

jyj

1 + log(� sin2 � log 1
jyj
log2

1
jyj
)

� �(sin2 � + e�1) log
1

jyj;

where we used the inequality �x log x � e�1 for 0 < x: This yields

exp

 
D�;0(z)

1 + log+D�;0(z)

!
� jyj��(sin2 �+e�1) � Cr��(1+e

�1)(sin �)��=e

for some positive constant C: The last function in the polar coordinates (r; �)

is integrable over 0 < r < 1;��=2 < � < �=2 because �(1 + e�1) � 1 < 1 and

�=e < 1:

3.34. Remark. For the above examples, whose Beltrami coeÆcients �(z) =

�(x+iy) depend on y only, we can give normalized �-conformal homeomorphisms

f : C ! C in the explicit form

f(z) = x + i
Z y

0

1� �(it)

1 + �(it)
dt:

4. Uniqueness

The following remark is a simple consequence of a well-known removability the-

orem for analytic functions.

4.1. Proposition. Let � be a Beltrami coeÆcient in a domain 
 such that

the singular set E = Sing(�) in 
 is countable. Suppose that a topological em-

bedding f : 
 ! bC is locally quasiconformal in 
 n E and satis�es (1.1) with �

there. Then f has the property that for any homeomorphic solution f̂ of (1.1) in


 nE there exists a conformal map h in 
0 = f(
) such that f̂ = h Æ f in 
 nE:
In particular, f̂ extends to an embedding of 
:

Indeed, let us assume that f̂ is another solution to the Beltrami equation

(1.1) with � in 
 nE: Then the function h = f̂ Æ f�1 is an injective holomorphic
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function in 
0 n f(E): Since f(E) is closed and countable in 
0; it is removable

for such a function and we conclude that h can be extended to a conformal map

on 
0:

In order to apply the removability arguments for the uniqueness problem it

seems necessary to have information on the singular set E and its image E 0 =

f(E); simultaneously, see, e.g., [12] and [3].

As Lehto [14] noted, it is reasonable to restrict ourselves to the case when

E is totally disconnected. However, this condition does not imply uniqueness in

general. We will introduce a geometric condition on totally disconnected compact

sets E and show that this condition can be combined with integrability conditions

involving the angular dilatation to guarantee the uniqueness.

A positive function m(r) de�ned on the interval (0; Æ) for small Æ > 0 is said

to be a modulus bound for a dominating factor H of divergence type if it satis�es

the condition

lim inf
r!0

Z m(r)

0

dt

H�1(2t� 2 log r)
> 0:(4.2)

Note that m(r)! +1 as r! 0:

For example, if H(x) = �x; then m(r) = " log(1=r) is a modulus bound for

H; where " is an arbitrary positive constant. If H(x) = �x=(1 + log+ x); then

m(r) = "(log(1=r))C is a modulus bound for H; where " > 0 and C > 1 are

arbitrary constants. More examples will be given in Section 5. Each modulus

bound m(r) generates a family of annuli Am(z0; r) = A(z0; re
�m(r); r) around

every point z0 2 bC :
The following notions describe the thinness of the boundary. Let H be a

dominating factor. A compact subset E of bC is said to be H-coarse at z0 2 E if

there exists a modulus bound m(r) for H such that for any small number Æ > 0

there is an r with 0 < r < Æ such that Am(z0; r) � 
: The set E is said to be

H-coarse if E is H-coarse at each point z0 2 E:We will also say that E is radially

coarse at z0 2 E if a positive constant function can be chosen as m(r) above.

It is clear that z0 forms a degenerate boundary component of 
 = bC nE if E

is H-coarse at the point.

4.3. Theorem. Let � be a Beltrami coeÆcient in bC such that E = Sing(�)

is a totally disconnected compact subset of bC : Assume that one of the following

conditions holds for each z0 2 E :
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1) D�;z0(z) is essentially bounded in a neighborhood of z0 and E is radially

coarse at z0;

2) There is a dominating factor H = Hz0 of divergence type for which E is

H-coarse at z0 and Z
V
eH(D�;z0 (z))dA](z) < +1(4.4)

for some open neighborhood V of z0:

Then there exists a homeomorphism f : bC ! bC which is locally quasiconformal

in 
 = bC n E and satis�es the Beltrami equation with � in 
: If f̂ is another

homeomorphic solution to the Beltrami equation in 
 with the same �; then

f̂ = h Æ f for a M�obius transformation h: In particular, f̂ can be extended to a

homeomorphism of bC :
For the proof of this theorem we need the following auxiliary lemma which is

due to Gotoh and Taniguchi. A compact set E is said to be annularly coarse at

z0 2 E if we can �nd a nesting sequence of disjoint ring domains An around z0

in bC n E with infnmodAn > 0: Here a sequence An of disjoint ring domains is

said to be nesting if each An separates An�1 from An+1: A compact set E is said

to be annularly coarse if E is annularly coarse at every point in E:

4.5. Lemma (Gotoh-Taniguchi [9]). If a compact subset E of the Riemann

sphere is annularly coarse, then E is removable for conformal mappings o� E:

Proof of Theorem 4.3. Let f be a uniform limit of the canonical approx-

imating sequence for �: Note that the existence of such an f is guaranteed by

Theorem 2.15. Set E 0 = f(E): We show that E 0 is annularly coarse. We may

assume that E � C : Let z0 2 E: Suppose �rst that case 2) occurs for z0: Then,

by assumption, there is an H 2 D and a constant M withZ
B(z0;r0)

eH(D�;z0 (z))dA(z) �M

for which E is H-coarse at z0 with modulus bound m : (0; Æ) ! (0;+1): We

then take arbitrarily small r > 0 so that Am(z0; r) � 
: By Lemma 2.22, we

estimate

mod f(Am(z0; r)) �
Z m(r)

1=2

dt

H�1(2t+ log(M=�r2))
:



28 On the Degenerate Beltrami Equation

It is easy to see that Z b

a

dt

H�1(2t+ c� 2 log r)
! 0

as r! 0 for any �xed a; b and c: Hence, by the de�nition of the modulus bound,

we obtain

lim inf
r!0

Z m(r)

1=2

dt

H�1(2t+ log(M=�r2))
= lim inf

r!0

Z m(r)

0

dt

H�1(2t� 2 log r)
> 0:

We can now �nd a sequence rn with 0 < rn+1 < rne
�m(rn) such that Am(z0; rn) �


 for n = 1; 2; : : : and that infnmod f(Am(z0; rn)) > 0: Hence, we conclude that

E 0 is annularly coarse at f(z0):

If case 2) occurs for z0; by assumption, z0 is radially coarse in E: Then it is

easier to see that E 0 is annularly coarse at f(z0) than the above.

Assume that f̂ is another homeomorphic solution to the Beltrami equation

(1.1) with � in 
: Then the function h = f̂ Æ f�1 is an injective holomorphic

function in bC n E 0: Since E 0 = f(E) is removable for such a function by Lemma

4.5, we conclude that h extends to a M�obius transformation. Thus, the proof is

complete.

Specifying H 2 D; we may obtain some consequences of Theorem 4.3. Let

us restrict ourselves to the dominating factors H(x) = �x and H(x) = �x=(1 +

log+ x) corresponding to exponential and subexponential integrability assump-

tions on K�(z); respectively.

4.6. Corollary. Let E be a totally disconnected, x-coarse compact subset ofbC : Suppose that � is a Beltrami coeÆcient in C with Sing(�) � E such thatZ
C

e�K�(z)dA](z) <1(4.7)

holds for a positive constant �: Then there exists a homeomorphism f : bC ! bC
which is locally quasiconformal in 
 = bC nE and satis�es the Beltrami equation

with � in 
: If f̂ : 
! bC is a locally quasiconformal embedding whose Beltrami

coeÆcient agrees with � a.e. then f̂ = h Æ f for a M�obius transformation h: In

particular, f̂ extends to a homeomorphism of the Riemann sphere.

4.8. Corollary. Let E be a totally disconnected compact subset of bC which

is x=(1 + log+ x)-coarse in E: Suppose that � is a Beltrami coeÆcient in C with
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Sing(�) � E such thatZ
C

exp

(
�K�(z)

1 + logK�(z)

)
dA](z) <1:(4.9)

Then there exists a homeomorphism f : bC ! bC which is locally quasiconformal

in 
 = bC n E and satis�es the Beltrami equation with � in 
: If f̂ : 
 ! bC
is a locally quasiconformal embedding whose Beltrami coeÆcient agrees with �

a.e. then f̂ = h Æ f for a M�obius transformation h: In particular, f̂ extends to a

homeomorphism of the Riemann sphere.

5. Dominating factors and Modulus bounds

In this section, we provide critical dominating factors H of divergence type and

their modulus bounds. The functions presented below are more or less standard.

For example, similar examples can be found in [11].

We de�ne the functions logn; expn;�n;� and �n for n = 0; 1; 2; : : : and for

� > 0 by

log0 x = x; logn x = log(logn�1 x) (n = 1; 2; : : :);

exp0 x = x; expn = exp(expn�1 x) (n = 1; 2; : : :);

�n;�(x) = x(log1 x) � � � (logn�1 x)(logn x)�; and
�n(x) = �n;1(x) (n = 0; 1; 2; : : :):

In particular, log1 and exp1 coincide with the usual log and exp respectively. Note

that logn is the inverse function of expn for each n:We also de�ne the numbers en

by en = expn 0: Then for each n > 0 the functions logn;�n;� and �n are de�ned

on (en�1;+1); positive on (en;+1); and greater than 1 on (en+1;+1):

We consider the function H(x) = x2=�n;�(x) for �xed n � 0 and � > 0: Then,

H 0(x) = (1 + o(1))H(x)=x and H 00(x) = (1 + o(1))H(x)= logx when x ! +1:

In particular, (eH)00=eH = H 00 + (H 0)2 = (1+ o(1))(H 0)2: Hence, we can choose a

suÆciently large number xn;� > en so that the function Hn;� de�ned by

Hn;�(x) =

8>>><>>>:
H(x) =

x2

�n;�(x)
if x > xn;�;

H(xn;�) if 0 � x � xn;�;
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is a dominating factor. Furthermore, Hn;� is of divergence type if and only if

� � 1 since the integralZ 1

xn;�

Hn;�(x)dx

x2
=
Z 1

xn;�

dx

�n;�(x)
=
Z 1

xn;�

dx

x(log x) : : : (logn�1 x)(logn x)
�

is divergent if and only if � � 1: Note that the choice of xn;� does not e�ect on the

integrability condition such as
Z
V
eH(D�;z0 )dA] < +1: We also write Hn = Hn;1:

5.1. Remark. The dominating factor H0 = H0;1 is essentially same as x:

The dominating factor H1 = H1;1 is equivalent to H(x) = x=(1 + log+ x) in the

sense that for any � > 1 we have H(x) < H1(x) < �H(x) for suÆciently large x:

First we give information on the behavior of the inverse function of Hn;�;

which is useful to derive a modulus of continuity estimate in connection with the

previous theorems.

5.2. Lemma. For each n � 1; � 2 R and c > 0;

(cHn;�)
�1(y) =

c

�n;�(y)

 
1 + (b + o(1))

log2 y

log y

!
(y ! +1)

holds, where b = 1 when n > 1 and b = �2 when n = 1: Suppose further that

� � 1 and, in addition if n = 1; suppose that 0 < �: Then

Z t

t1

dy

(cHn;�)�1(y)
=

8>><>>:
c

1� �
(logn t)

1�� +O(1) when � < 1;

c logn+1 t+O(1) when � = 1

as t! +1 for a suÆciently large number t1: When n = 1 and � � 0;Z t

t1

dy

(cH1;�)�1(y)
=
�

c

1� �
+ o(1)

�
(log t)1��

as t! +1 for a suÆciently large number t1:

Proof. We assume that n � 2: (The case n = 1 can be treated in the same

way even more easily.) Letting � = �(y) is a positive quantity with log �(y) =

O(1) as y !1; we observe

log (��n;�(y)) = log � + log y + log2 y + � � �+ logn y + � logn+1 y

=

 
1 + (1 + o(1))

log2 y

log y

!
log y (y ! +1)
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for a positive constant �: We can then see inductively that logk(��n;�(y)) =

logk y � (1+ (1+ o(1)) log2 y= log y log2 y � � � logk y) for every integer k � 1: There-

fore,

cHn;�(��n;�(y)) =
c��n;�(y)

log(��n;�(y)) � � � (logn(��n;�(y)))�
(5.2)

= c�y

 
1� (1 + o(1))

log2 y

log y

!

as y ! +1: We now restrict ourselves to the case when c� = 1 + p log2 y= log y

for some constant p: We then see that (1 � log2 y= log y)c� = 1 + (p � 1)(1 +

o(1)) log2 = log y: Since ��n;�(y) > Hn;�
�1(y) for suÆciently large y if p > 1 and

��n;�(y) < Hn;�
�1(y) for suÆciently large y if p < 1; the asymptotic formula for

the inverse function follows.

We next show the second assertion. For simplicity, we assume that � <

1: (Actually, the case � = 1 can be absorbed to this case because Hn;1(y) =

Hn+1;0(y) for large y:) By the �rst assertion, we computeZ t

t1

dy

(cHn;�)�1(y)
=
Z t

t1

cdy

�n;�(y)
+ (�bc + o(1))

Z t

t1

log2 ydy

y(log y)2 log2 y � � � (logn y)�

if n > 1: (If n = 1; we need a slight modi�cation above.) Since the second integral

in the right-hand side is convergent as t! +1 under the assumptions on �; the

required asymptotic formula is obtained.

Proof of Theorem 1.5. We are now ready to prove Theorem 1.5 which is

given in Introduction. Without loss of generality, we may assume that � < 1 (see

the proof of Lemma 5.2). Under the hypothesis,
R
C e

cHn;�(K�(z))dA](z) <1 holds.

Since cHn;� is a dominated factor of divergence type, we conclude the existence

and the regularity of the normalized homeomorphic solution f to the Beltrami

equation by Theorem 3.11. We now investigate the modulus of continuity of f:

From the assumption, for an arbitrary number R > 1; it follows thatZ
B(z0;1)

ecHn;�(K�(z))dA(z) �M =
Z
B(0;R+1)

ecHn;�(K�(z))dA(z) <1

for each point z0 with jz0j � R: Setting b = log(M=�); we obtain from Theorem

3.5 that

jf(z)� f(z0)j � C exp

(
�1

2

Z 2m+b

1+b

dt

(cHn;�)�1(t)

)
; jz � z0j < 1;
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where m = log(1=jz � z0j) and C is a constant depending only on �; c; n; � and

R: Applying Lemma 5.2, in the case when n > 1; we have

1

2

Z 2m+b

1+b

dt

(cHn;�)�1(t)
=

c

2(1� �)
logn(2m+b)+O(1) =

c

2(1� �)
logn(m)+O(1)

asm! +1: The case when n = 1 can be shown similarly by using the latter part

of Lemma 5.2. Thus we have shown the estimate for the modulus of continuity

of f: To see the sharpness, we construct an example below. As we noted, a more

abstract approach for a dominated factor of convergence type can be found in

[11, Theorem 3.1].

Let M(t) = � log(1=t) � � � logn(1=t)(logn+1(1=t))
� = ��n;�(log(1=t)) for con-

stants � > 0; n � 0 and � 2 R: The radial stretching f de�ned by

f(z) =
z

jzj exp
Z jzj

Æ0

dt

tM(t)

in 0 < jzj < Æ0; where Æ0 is a suÆciently small number. Then, as is easily

seen, the pointwise maximal dilatation of f is given by K(z) = M(jzj): Note
that the function f continuously extends to z = 0 by setting f(0) = 0 precisely

when the integral
R +1 dt=tM(t) diverges, namely, � � 1: In particular, when

� > 1; by Theorem 2.15 (and Proposition 4.1 as well), exp(H Æ K(z)) is not

locally integrable around the origin for every dominating factor H of divergence

type. On the other hand, we can see that H Æ K is exponentially integrable

around the origin when we choose H = cHn;�; where c is a constant satisfying

c < 2=�: We �x a number " with c� < " < 2: From (5.2), it follows that

H(K(t)) = cHn;�(��n;�(log(1=t))) = c�(1 + o(t)) log(1=t) as t! +0: Therefore,

there is a number r0 > 0 such that H(M(t)) � " log(1=t) for all 0 < t < r0: We

now computeZ
B(0;r0)

eH(K(z))dA(z) = 2�
Z r0

0
teH(M(t))dt � 2�

Z r0

0
t1�"dt < +1:

In particular, we �nd that the exponential integrability condition for Hn;� ÆK�

does not imply the existence of a homeomorphic solution in the case � > 1:

Next, we assume that � < 1: (As we noted, the case � = 1 can be included

in the case � = 0:) Then, the function f can be expressed in the form

f(z) =
Cz

jzj exp
 �1
(1� �)�

(logn+1(1=jzj))1��
!
; 0 < jzj < Æ0:
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Since � can be chosen arbitrarily as long as � < 2=c; the sharpness is obtained.

Now the proof of the theorem in Introduction has been completed.

To state results on modulus bounds of the above dominating factors, we pre-

pare some auxiliary functions. For constants C > 1 and �; Æ > 0 and a non-

negative integer n; we set

'n;C(x) = expn ( logn x+ logC); and

 n;�;Æ(x) = expn

�h
( logn x)

� + Æ
i1=��

for x � en: By de�nition, 'n;C =  n;1;logC : For example, we see that

'0;C(x) = x+ logC;

'1;C(x) = Cx; and

'2;C(x) = xC :

5.3. Proposition. For a positive integer n a modulus bound for Hn can be

given by

m(r) = "'n+1;C( log 1=r)

for r small enough, where " and C are arbitrary constants with " > 0 and C > 1:

Proof. From Lemma 5.2, we see that

lim inf
r!0

Z m(r)

0

dt

Hn
�1(2t� 2 log r)

=
1

2
lim inf
r!0

h
logn+1 (2m(r)� 2 log r)� logn+1(�2 log r)

i
:

Noting that log r = o(m(r)) as r! 0; we obtain

logn+1 (2m(r)� 2 log r) = logn+1('n+1;C(log 1=r)) + o(1)

= logn+1(log 1=r) + logC + o(1)

and logn+1(c(r)) = logn+1(log 1=r) + o(1) as r ! 0: Hence, we have con�rmed

that m(r) is a modulus bound for Hn:

In the same way, we can also show the following.

5.4. Proposition. For a positive integer n and � 2 (0; 1); a modulus bound

for Hn;� can be given by

m(r) = " n;1��;Æ( log 1=r)

for r small enough, where " and Æ are arbitrary positive constants.
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