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1 Introduction

Rational functions have various kinds of �niteness. For instance, rational
functions can be described by �nitely many coe�cients. Also, rational func-
tions has a �nite number of singularities, which are critical points in this
case. And these two concepts of �niteness are essentially the same.

Finiteness of singularity has been generalized to the case of transcendental
entire functions, but as �niteness in the target plane. We say that an entire
function f is in the Speiser class or of �nite singular type if the number of
singular values is �nite. Then, many properties of rational functions, or more
precisely, of polynomials, still hold for functions in the Speiser class.

For instance, no wandering domains theorem and no Baker domains
theroem still hold, and we have the �nite-dimensional Teichm�uller space of
such a function. See [8] and [9].

Remark The Teichm�uller theory states that the dimension of the Te-
ichm�uller space T (f; Ff) of a function f in the Speiser class on the Fatou
set Ff is �nite-dimensional and parametrized by singular values in Ff . More
precisely, we have

dimC T (f; Ff) = NAC �Np;

where NAC is the number of the foliated equivalence class of acyclic (non-
periodic and non-preperiodic) singular values of f in Ff and Np is the number
of cycles of parabolic basins. Here we say that two singular values are foliated
equivalent if the closures of the grand orbits of them are coincident with each
other.

Now, when we discuss other kinds of issues such as the NILF conjecture,
some di�culties appear. In particular, we do not necessarily know a natural
representation space as in the case of Kleinian groups.

A natural concept on �niteness of entire function would be �niteness of
singularities in number. One way to formulate this is the concept of structural
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�niteness; constructability from a �nite number of building blocks represent-
ing simple singularities. Such a concept may be considered to correspond to
�niteness of generators in number of a Kleinian group. Thus, we have new
entries in some version of Sullivan's dictionary as follows.

Kleinian Groups Entire Functions
generators building blocks

�nitely generated structurally �nite

Sullivan's Dictionary

2 Maskit surgery

We use two kinds of building blocks; one is a quadratic block

az2 + bz + c : C! C (a 6= 0)

and the other is an exponential block (exp-block)

a exp bz + c : C! C (ab 6= 0):

The above two kinds of blocks are simplest in the sense that they are
smooth covers of once-punctured C and, over the exception point, they has
simplest singularities; a branch point and a logarithmic singurarity.

Remark The simplest covering structure is nothing but a similarity trans-
formation

az + b : C! C (a 6= 0);

which gives a universal covering structure of C, and hence has no singularty.
We call such one a C-block.

De�nition (Maskit surgery by connecting functions)
Let fj : C ! C (j = 1; 2) be two entire functions, and Aj be the set of

singular values of fj .
Assume that there is a cross cut L in C such that

1. both of L\A1 and L\A2 are either empty or consist of a single point
z0, which is an isolated point of each Aj,

2. L separates A1 � fz0g from A2 � fz0g, and
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3. if L \ A1 = L \ A2 = fz0g, then fz0g is a critical value of each fj: for
a small disk U with center z0 such that U \ Aj = fz0g, f

�1
j (U) has

a relatively compact component Wj which contains a critical point for
each fj.

Then we say that an entire function f : C ! C is constructed from f1
and f2 by a Maskit surgery with respect to L if the following assumptions
are satis�ed: Let Dj be the component of C�L containing Aj �fz0g. Then
there exist

1. components ~D1 and ~D2 of f�11 (D2) and f�12 (D1), respectively, such
that fj : ~Dj ! D3�j is biholomorphic and ~Dj \Wj 6= ; if L \ Aj are
non-empty,

2. a cross cut ~L in C such that f gives a homeomorphism of ~L onto L,
and

3. a conformal map �j of C� ~Dj onto Uj such that fj = f ��j on C� ~Dj,
where U1 and U2 are components of C� ~L.

Remark More presicely, the data for a Maskit surgery consists not only of
two covering structures (blocks) f1 and f2, but also of the homotopy class of
cross cut L modulo fz0;1g in the complement of A1 [A2�fz0g and cut-o�
pieces ~D1 and ~D2. If L \ A1 = L \ A2 is empty, a Maskit surgery is quite
simple, and we call such one a Klein surgery.

De�nition We say that an entire function is structurally �nite if it can be
constructed from a �nite number of building blocks by Maskit surgeries .

We say that a structurally �nite function is of type (p; q) if it is made
from p quadratic blocks and q exp-blocks.

Clearly, a structurally �nite entire function belongs to the Speiser class.
Typical examples of structurally �nite entire function are polynomials and
decorated exponential functions

P (z)eQ(z)

with polynomials P and Q.
The fundamental properties of structurally �nite entire functions are dis-

cussed in [15] and [16], some of which are gathered in x4. In this note, we
discuss some of combinatorial features of Maskit surgeries and of structurally
�nite entire functions.
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3 Con�guration trees

To discribe a given structurally �nite entire function, we use the following
kind of con�guration graph. We will de�ne it in a general setting. I should
remark that the de�nition below is di�erent from the old one in [14].

De�nition (Con�guration tree) A con�guration tree is a planar tree
with the initial vertex (and hence edges have an orientation towards the
initial vertex) and colored as follows:

1. There are two kind of vertices; white ones and black ones.

2. There are three kind of edges; white ones, black ones, and red ones.

3. Every connected component of the set of all white vertices and white
edges is a subtree R with vertices Z, which we call a Z-unit.

4. Every edge not in any Z-unit is colored black or red, according as it is
towards the initial vertex from a black vertex or from a white vertex.

Also a con�guration tree is associated with the con�guration data.

1. the singularity data; the center locus attached to every Z-unit and the
decoration locus attached to every black edge, and

2. a spider at 1, which assigns each of the singularity data a path to the
in�nity (cf. [5]).

De�nition We call a pair of a red edge and the black vertex pointed by it
a reduction pair. And when we change the initial vertex and the red edge in
a reduction pair has the opposite orientation, we delete the pair, and attach
a new pair to every white vertex a black edge now starting from.

We say that such a new con�guration tree is obtained by a change of the
initial vertex. Further, if a white vertex is the initial one, then we may attach
a reduction pair and regard that the newly attached black vertex is the initial
one. Thus we may always assume that the initial vertex is black.

We say that two con�guration trees are equivalent, if, after suitable changes
of the initial vertices of both, they are identical including colors.

De�nition We say that a con�guration tree T is realizable if there is an
entire function f which gives a tree equivalent to T under the following
injunctions;

1. a black edge and its starting black vertex represent a Maskit surgery
attaching a quadratic block
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2. a red edge and its starting Z-unit represent a Maskit surgery attaching
an exp-block.

We may call T a con�guration tree of f (with respect to a suitable con-
�guration data). And we also say that, in case 1), a black edge and the
associated black vertex represent a C-decoration and the decorated C-block,
respectively (cf. [9]).

Remark Realizability of a general con�guration tree depends on the con-
�guraiton data. Indeed, if the tree is not locally �nite at a vertex and there
are countably many edges to the vertex, then we can give a decoration loci
to these edges so that the tree can not be realized.

De�nition An in�nite end of a locally �nite tree is a sequence of decreasing
components of the complements of compact subtrees exhausting the tree.

An in�nite end determined by subtrees with white vertices only is called
a white end, and one determined by subtrees with black vertices only is called
a black end.

Proposition 1 (Danjoy-Carleman-Ahlfors Estimate) Let T be a locally
�nite tree realizable by an entire function in the Speiser class and of order
� < +1.

Suppose that every in�nite end is either white or black. Then the number
of in�nite ends of T is not greater than maxf2�; 1g. In particular, the number
of Z-units is not greater than �

Proof. Assume that there are (at least) 2m white ends and n black ends.
Let B be a disk containing all singular values. Then we see that f�1(B) is
connected and the complement has at least m + n components. Each such
component contains an asymptotic path for the singular value 1, which
de�nes a direct singularity. Also, every Z-unit gives a direct �nite singularity.
Hence we have 2m + n direct singuralities. Then Danjoy-Carleman-Ahlfors
theorem gives that 2m+ n � maxf2�; 1g, which shows the assertions.

Remark Every transcendental entire function is represented by a con�gu-
ration tree with an in�nite end even if the order of it is 0.

In the case of meromorphic f of �nite order, every indirect singularity is
a limit of critical values ([3]).

De�nition The core of a con�guration tree is the smallest connected closed
subtree containing all black vertices and non-white edges. And we call the
tree is virtually compact if the core is compact.

A virtually compact tree is locally �nite, and has only a �nite number of
ends. Moreover, we have the following
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Figure 1: Con�guration tree of a exp z2 + b
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Figure 2: Another tree of a exp z2 + b

Theorem 2 (Virtual compactness) The con�guration tree of every struc-
turally �nite function has a virtually compact core.

Conversely, every con�guration tree with virtually compact core is realiz-
able by a structurally �nite entire function.

Thus the peripheral structure of a structurally �nite entire function is
represented by Z-units. The proof is easily given from the de�nition.

Example 1 Figures 1 and 3 are con�guration trees of a exp z2 + b and
Cerf(z) = a

R z

0
et

2

dt + b, respectively. Here the concentric circles indicate
the initial vertices. Figures 2 and 4 are trees equivalent to those in Figures
1 and 3, respectively.

Example 2 Another typical example of con�guration trees is a dual of a
colored tree dessin of a Belyi function (cf. [12]).
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Figure 3: Con�guration tree of Cerf(z) = a
R z
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Figure 4: Another tree of Cerf(z) = a
R z
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Here a Belyi function is a polynomial with only two critical values 0; 1.
Further, we assume that the tree dessin of f is collored so that every point
in f�1(0) is a green vertex and every point in f�1(1) is a red one. We write
this tree dessin as Df .

Proposition 3 For every Belyi function f , the con�guraiton tree Tf can be
constructed canonically from the colored tree dessin Df when the initial vertex
is given.

Conversely, Df can be obtained from the con�guration tree Tf canonically.

Proof. The construction is as follows: First, we can consider each edge of the
dessin Df as a black vertex of the con�guration tree Tf . Each black vertex
neighboring to the initial vertex v0 of Tf , which corresponds to an edge in
Df neighboring to the edge corresponding to v0, are connected by a black
edge of Tf with decoration locus determined by the color of the vertex of Df ,
which are considered the �rst age of C-decorations. Repeating this process,
we have the con�guration tree.

The converse can be de�ned also canonically; the set of black edges of Tf
toward the same vertex is devided into two classes by the decoration loci,
and each class corresponds to a single vertex in Df .

4 Properties of structurally �nite entire func-

tions

De�nition Let f be a non-linear entire function. Then the full deforma-
tion set FD(f) of f is the set of all entire functions g such that there is a
quasiconformal self-map � of C satis�ying the qc-L1 condition:

kf � g � �k1 = sup
C

jf � g � �j <1:

Here we may assume that such a � as above is always normalized, that is,
�xes 0 and 1. Also it is clear that, if g 2 FD(f), then f 2 FD(g).
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De�nition For any two function f1; f2 in FD(f), we set

d(f1; f2) = inf
�
logK(�1 � �

�1
2 ) + kf1 � �1 � f2 � �2k1

�
;

where �1 and �2 move all normalized quasiconformal automorphisms of C
satisfying the qc-L1 condition with f1 and f2, respectively.

De�nition The pseudo-distance d is a distance, and FD(f) with this dis-
tance is a complete metric space. We call this distance d on FD(f) the
synthetic Teichm�uller distance on FD(f). FD(f), with the synthetic Te-
ichm�uller topology induced by d, is called the full synthetic deformation space
of f and written as FSD(f).

Theorem 4 (Inclusion Theorem) For a structurally �nite entire function
f , the full deformation set FD(f) contains all structurally �nite entire func-
tions of the same type. In particular, any function topologically equivalent to
f belongs to FD(f).

Moreover, we can show that the family of all structurally �nite entire
function has an explicit representation.

Theorem 5 (Representation Theorem) Every structurally �nite entire
function has the form Z z

P (t)eQ(t)dt

with suitable polynomials P and Q.

Remark Such primitive functions have already appeared as typical examples
in various contexts. See for instance, [1] [2] [11]. Also recall that Baker [1] �rst
showed every structurally �nite entire function has no wandering domains.

Now we can identify the set of all structurally �nite entire function of
type (p; q) with

SFp;q =

�Z z

0

(cpt
p + � � �+ c0)e

aqt
q+���+a1tdt+ b

�

with cpaq 6= 0 if q > 0, and if q = 0 we regard that SFp;0 = Polyp+1.

De�nition For f 2 SFp;q, we set SD(f) = SFp;q, and equip it with the
synthetic Teichm�uller topology, which we call the synthetic deformation space
of f .

Here another natural topology on SFp;q is induced from the coe�cient
space, which we call the coe�ceint topology.
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Theorem 6 (Equivalence Theorem) The synthetic Teichm�uller topology
on SF p;q is equivalent to the coe�cient one.

As for the Hausdor� dimension, we have the following results. Proofs will
be given in [16].

Theorem 7 (Transcendental implies H-dim two) For every transcen-
dental structurally �nite f , the Hausdor� dimension of J(f) is two.

Remark Compare with a theorem of Stallard ([13] II): For every transcen-
dental entire function with bounded singular set, the Hausdor� dimension of
J(f) is greater than 1.

As for the area of the Julia set, we have the following

Theorem 8 (Hyperbolic implies area zero) Let f be a (not necessarily
transcendental) structurally �nite entire function. If f is hyperbolic (cf. [7]),
then J(f) has vanishing area.

Remark Devaney-Keen proved in [4] that, if the Schwarzian derivative of a
meromorphic f is polynomial (such an f is structurally �nite if f is entire)
and f is hyperbolic, then the Julia set has vanishing area.

Corollary 1 (NILF) Suppose that f is a structurally �nite entire function
and can be approximated by hyperbolic elements in SD(f). Then the Julia
set of f admits no f -invariant line �elds.
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