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Abstract. In this article, we will survey the relationship between various conformally
invariant (pseudo-)metrics on Riemann surfaces and classical extremal problems. As a
simple application, we will give universal estimates for (pseudo-)metrics which satisfy a
contraction property with respect to a certain class of holomorphic maps.

1. Introduction

In the unit disk D = fz 2 C ; jzj < 1g; the Poincar�e metric jdzj=(1 � jzj2) plays quite
an important role in modern function theory. Various generalizations of this metric to
Riemann surfaces have been given, e.g., hyperbolic (Kobayashi) metric, Carath�eodory
metric, Hahn metric, Begman metric and so on. In this article, we will provide a unifying
treatment of such invariant metrics and explain a general principle dominating those
metrics by some universal metrics.
A family of conformal pseudo-metrics �R de�ned for all Riemann surfaces R is said to be

holomorphically contractive if f ��R0 � �R holds for any holomorphic map f : R! R0 and
is said to be normalized if �D (0) = 1 holds for the unit disk and its canonical coordinate
z: The following result is well known (cf. [5]).

Theorem 1.1. Any normalized, holomorphically contractive, conformal pseudo-metric
� satis�es cR � �R � kR for all Riemann surfaces R; where cR and kR denote the
Carath�eodory and the Kobayashi pseudo-metrics, respectively.

Many invariant metrics need not be holomorphically contractive but satisfy a weaker
contraction property. A family of conformally invariant, conformal pseudo-metrics �R is
said to be monotone if �R0

� �R holds for each Riemann surface R and for each subdomain
R0 of R:

Theorem 1.2. Any normalized, conformally invariant, monotone, conformal metric �
satis�es aR � �R � hR for all Riemann surfaces R; where aR and hR denote the Ahlfors-
Beurling and the Hahn pseudo-metrics, respectively.

Precise de�nitions and fundamental properties for the above metrics will be given in
Sections 2 and 3. Section 2 will be devoted to the formal de�nition of (conformal) pseudo-
metircs and explanations of principles generating invariant pseudo-metrics from various
classical function spaces. We will state also a more general result about pseudo-metrics
with some contraction property. As corollaries, we will show the above two theorems in
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Section 3, where we will provide characterizations of many classical (pseudo-)metrics in
our context. A similar approach can be found in the book [10] by Sario and Oikawa.
Some of the formulations here can be generalized to the case of several complex variables

although many of them would only be Finsler metrics instead of Riemannian metrics, but
we will not pursue it here.

2. Principles

First, we recall the de�nition of di�erential forms on Riemann surfaces. Let R be a
Riemann surface with an atlas A consisting of local coordinates � : U� ! V� from an
open set U� of R onto an open set V� of C such that

S
�2A U� = R and that � Æ ��1 :

�(U� \ U�)! �(U� \ U�) is holomorphic for each � and � in A:
Let m and n be half integers, i.e., 2m; 2n 2 Z; with m+ n being an integer. A family

(!� : V� ! C )�2A of functions is said to be an (m;n)-form on R and will be denoted
conventionally by ! or !�(z)dz

md�zn if for two local coordinates z = �(p) and w = �(p)
in A these functions satisfy the transition relations

!�(w)(w
0)m(w0)n = !�(z)

for z 2 �(U� \ U�); where w = � Æ ��1(z) and w0 = dw=dz and the branch of w01=2w0
1=2

should be chosen to equal jw0j in the case thatm and n are not integers. A di�erential form
! is said to be, for example, continuous or holomorphic if any coeÆcient !� is continuous
or holomorphic. An (m; 0)-form is called an m-form or m-di�erential. If no confusion
can occur, we often write ! = !(z)dzmd�zn for simplicity. When R is a plane domain,
we will take the canonical coordinate z as a local coordinate unless a speci�cation will
be stated. A (0; 0)-form ! is nothing but a function on R; so we can write ! = !(p) for
p 2 R without refering to any local coordinate. If all coeÆcients !� of an (m;m)-form are
positive (or non-negative) for each local coordinate �; we will say that ! is positive (or
non-negative). A positive (or non-negative) (1

2
; 1
2
)-form on R will be called a conformal

metric (or conformal pseudo-metric) on R: In this article, a (pseudo-)metric will always be
conformal. We note �nally that a non-negative (1; 1)-form ! = !(z)jdzj2 can be regarded
as an area element on the surface under the identi�cation dzd�z = jdzj2 = dx ^ dy; where
z = x + iy:
Let f : R! R0 be a holomorphic map. Then we can de�ne the pullback of an (m;n)-

form ! on R0 by f , which will be denoted by f �!; by

(f �!)�(z) = !�(w)(w
0)m(w0)n;

where � and � are local coordinates of R and R0; respectively, such that f(U�) � U� and
w = � Æ f Æ ��1(z):
Let R denote the category of all (connected) Riemann surfaces with holomorphic maps

between them as morphisms. A family � = (�R) of pseudo-metrics �R onR for all Riemann
surfaces R 2 R will be simply called a pseudo-metric. A pseudo-metric � is said to be
conformally invariant if f ��R0 = �R holds for all conformal isomorphism f : R ! R0: A
conformally invariant pseudo-metric � is said to be normalized if �D (0) = 1 for the unit
disk D : By conformal invariance, this means also that �D = jdzj=(1�jzj2) for the canonical
coordinate z of D :
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Let C mean a class of holomorphic maps between Riemann surfaces, namely, C(R;R0) is
a set of holomorphic maps from R to R0 for any pair of Riemann surfaces. A pseudo-metric
� is said to be C-contractive if f ��R0 � �R holds for any f 2 C(R;R0):
In the sequel, we will use mainly the next three classes:

O(R;R0) = ff : R! R0 holomorphicg;
S(R;R0) = ff 2 O(R;R0); injective or constantg; and
I(R;R0) = ff : R! R0 biholomorphicg:

Note that I(R;R0) is empty if R and R0 are not holomorphically equivalent.
By de�nition, � is I-contractive if and only if � is conformally invariant. Similarly, �

is O-contractive if and only if � is holomorphically contractive, and � is S-contractive if
and only if � is conformally invariant and monotone.
We now give an idea to systematically construct conformally invariant pseudo-metrics

from the natural classes of functions on Riemann surfaces in the spirit of Ahlfors-Beurling
[1].
Let m be a positive integer and C be a class of holomorphic maps between Riemann

surfaces. A class F = (F(R))R2R of subsets of holomorphic m-forms on R will be called
C-admissible if the following conditions are ful�lled:

(i) if f 2 C(R;R0) then f �(F(R0)) � F(R); and
(ii) the set F(R) is compact in the sense that any sequence in F(R) has a subsequence

converging to some element of F(R) uniformly on each compact subset of R:

Given a C-admissible class F of holomorphic m-forms, we can de�ne the pseudo-metric
�F by

(�FR;�(z))
m = supfj'�(z)j;' 2 F(R)g;

where z = �(p) is a local coordinate of a Riemann surface R: In fact, for each point p 2 R;
by property (ii), we see that there exists an element ' 2 F(R) such that �FR = j'j1=m
at p 2 R; in particular, �FR(p) < +1: We then have the following result, a prototype of
which can be found in [1, Theorem 1].

Proposition 2.1. If F is C-admissible, then the pseudo-metric �F is continuous and
C-contractive. Moreover, log �FR is subharmonic on R unless �FR = 0:

Remark. We say that log �R is subharmonic if log �R;� is subharmonic on V� for each
local coordinate �: Note that subharmonicity of log �R is conformally invariant because
log jdw=dzj is harmonic for a biholomorphic transition function w = w(z):

Proof. By de�nition, log �FR;� = 1
m
sup'2F(R) log j'�j and each log j'�j is subharmonic in

V�: So the latter part of the proposition is now clear. In particular, �FR is lower semi-
continuous. In order to show the upper semi-continuity of �FR; it is suÆcient to see that
�R(p) � � for a sequence pn converging to p in R such that �R(pn) � � for all n: Let
'n 2 F(R) be an extremal di�erential for which �R(pn) = j'n(pn)j holds. Then, by
compactness of F(R); we may assume that the sequence 'n converges to an element '
of F(R) uniformly on each compact subset of R: Therefore, we have �FR(p) � j'(p)j � �:
Finally, C-contractivity is straightforward to see.
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We now explain a construction of pseudo-metrics which is dual with the above in some
sense.
The complex tangent space TpR of a Riemann surface R at a point p 2 R is de�ned

as the set of derivations from the space of holomorphic germs Hol p(R) at p into C ;
where a map v : Hol p(R) ! C is called a derivation if v is linear and satis�es v(fg) =
g(p)v(f) + f(p)v(g) for all f; g 2 Hol p(R): Let f : D ! R be a holomorphic map with
f(0) = p: We can then assign to f a tangent vector vf de�ned by

vf (g) =
d

dz
(g Æ f)(z)

���
z=0

(g 2 Hol p(R)):

Note that vf is nothing but the image of the canonical tangent vector (d=dz)jz=0 of T0D
under the tangent map f� of f:
A class C of holomorphic maps between Riemann surfaces will be called ample if the

following four conditions are satis�ed:

(a) for each point p of an arbitrary Riemann surface R there exists a non-constant map
f 2 C(D ; R) such that f(0) = p;

(b) each f 2 C(R;R0) satis�es f �(C(R0; D )) � C(R; D );
(c) for every Riemann surface R; C(R; D ) is compact in the sense that any sequence in

C(R; D ) converging uniformly on compacta has its limit in C(R; D ); and
(d) idD 2 C(D ; D ):
We set Cp(R) = ff 2 C(D ; R); f(0) = pg: We now de�ne a pseudo-metric �C by

�CR;�(z)
�1 = supfjvf(�)j; f 2 Cp(R)g;

where � is a local coordinate of R with z = �(p): Note that the ampleness guarantees
�R < +1: The pseudo-metric �C is actually normalized and C-contractive as is easily
seen by property (d) the Schwarz lemma.

Remark. Formally, we may think that a tangent vector is a �1-form, so the above
de�nition agrees with the former one for �F in a formal sense.

We can also associate a pseudo-metric with a class C: Set
C](R) = fdf ; f 2 C(R; D )g

for an arbitrary Riemann surface R: Then C] is C-admissible by properties (b) and (c).

So, we now set �C = �C
]

: Then the pseudo-metric �C is normalized and C-contractive.
Remember that �CR(p) = supf2C(R;D ) jdf j(p) by de�nition.

The pseudo-metrics �C and �C are the minimum and the maximum among normalized
C-contractive pseudo-metrics �; respectively.

Theorem 2.2. Let C be an ample class of holomorphic maps between Riemann surfaces.
A normalized, C-contractive pseudo-metric � satis�es �CR � �R � �CR for each Riemann
surface R:

Proof. Fix a point p0 in R and a local coordinate � around p0: Set z0 = �(p0): Let
f 2 C](R) = C(R; D ) and put f� = f Æ ��1: By assumption, we have

jf 0�(z0)j �
jf 0�(z0)j

1� jf�(z0)j2 = (f ��D )� � �R;�(z0):
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This implies �CR;�(z0) � �R;�(z0):
We next take an f 2 Cp0(R) and set f� = � Æ f on f�1(U�): Then

�R;�(z0)jf 0�(0)j = f ��R(0) � �D (0) = 1:

Noting f 0�(0) = vf(�); we obtain �R;�(z0) � �CR;�(z0):

3. Examples

In this section, we will demonstrate various classical invariant metrics can be re-de�ned
in our framework. In this section, a metric, say �; is sometimes called metrics instead of
pseudo-metrics when �R is actually a metric unless �R identically vanishes.

Example 1 (Kobayashi pseudo-metric kR). The pseudo-metric k := �O is called the
Kobayashi pseudo-metric (cf. [5]). By de�nition, we can easily see that this metric is
holomorphically contractive. Furthermore, we have the next result.

Lemma 3.1. If R is hyperbolic, then kR coincides with the hyperbolic metric, that is,
��kR = jdzj=(1� jzj2) for a holomorphic universal covering � : D ! R of R: Otherwise,

namely, R is conformally equivalent to either the Riemann sphere bC ; the complex plane
C ; the punctured complex plane C � = C � f0g or a complex torus (an elliptic curve), we
have kR = 0:

Proof. Suppose thatR is hyperbolic and a point p 2 R is given. Let � be a local coordinate
with �(p) = z0: Then we can take a holomorphic universal covering � from the unit disk
with �(0) = p: It suÆces to show that kR;�(z0) = 1=jv�(�)j: Let f 2 Op(R): We can then

take a lift ~f : D ! D of f such that ~f(0) = 0 via the universal covering �: The Schwarz
lemma now implies jv�(�)=vf(�)j = j ~f 0(0)j � 1; which means that kR;�(z0)

�1 = jv�(�)j:
The latter part is obvious because we can take a holomorphic immersion f of C into R

with f(0) being equal to a given point in R:

Example 2 (Carath�eodory pseudo-metric). The pseudo-metric c = �O is called the Carath�eodory
(-Rei�en) pseudo-metric. By de�nition, this pseudo-metric is normalized and holomor-
phically contractive. We directly see that cR = 0 if and only if R 2 OAB; namely, R
carries no non-constant bounded analytic functions.

The quantity cR(p) is sometimes called the analytic capacity. An extremal function
f : R ! D satisfying jdf j(p) = cR(p) is usually called the Ahlfors function at p and
known to be unique up to unimodular constants (see [4]). We remark that the condition
cR(p) = 0 at some point p need not imply that cR(p) = 0 at every point p in the case
that R is non-planar. A counterexample was constructed by Virtanen [13] (see also [10,
X. 2K]). The same can be said to the span metric sR de�ned below.
Applying C = O to Theorem 2.2, we now have Theorem 1.1.

Example 3 (Hahn metric). The pseudo-metric h := �S is called the Hahn metric (see
[6] for details). This metric is normalized, conformally invariant and monotone. It follows

that hR = 0 if and only if R is conformally equivalent to either bC or C :
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This metric is greatly useful because of conformal invariance and comparability with
the quasi-hyperbolic metric in the case of plane domains.

Lemma 3.2 ([6]). For a proper subdomain D of C ; we have the estimate

1

4ÆD(z)
� hD(z) � 1

ÆD(z)
;

where ÆD(z) = inffjz � aj; a 2 @Dg:
Example 4 (Ahlfors-Beurling pseudo-metric). The pseudo-metric a := �S has been used
in the paper [1] by Ahlfors and Beurling. This is normalized, conformally invariant and
monotone. Note that aR = 0 if and only if R is either of positive genus or planar and the
boundary is of class NSB = NSD: For other characterizations of the property aR = 0 for
plane domains R; see [10, VII. 5C].

Applying C = S to Theorem 2.2, we have Theorem 1.2.

Example 5 (Bergman metric). Let 
(R) be the space of square integrable holomorphic
1-forms ! on a Riemann surface R with norm

k!k
(R) =
�
i

2

ZZ
R

! ^ �!

�1=2

=

�ZZ
R

j!(z)j2dxdy
�1=2

:

We de�ne the class W by W(R) = f! 2 
(R); k!k
(R) �
p
�g. Then the pseudo-

metric b := �W is called the Bergman metric. This metric is also normalized, conformally
invariant and monotone. Note that bR = 0 if and only if R is planar and R 2 OG (see
[10]). Virtanen [13] showed that if bR(p) = 0 at some point p 2 R then bR identically
vanishes (see also [10, II. 3C]).

The space 
(R) is actually a Hilbert space with the inner product

(!; Æ)R =
i

2

ZZ
R

! ^ �Æ =

ZZ
R

!(z)Æ(z)dxdy:

For a local coordinate � of R; the linear functional ! 7! !�(w) is bounded on 
(R) for
each w 2 V�; and hence there exists an element ��;w 2 
(R) such that !�(w) = (!; ��;w)R
for all ! 2 
(R) by the Riesz representation theorem. For another local coordinate
z = �(p); we write KR;�;�(z; w) = ��;w� (z) for (z; w) 2 V��V�: For brevity, we sometimes

write KR(p; q) = KR(z; w)dzd �w and call it the Bergman kernel of R: Note that KR(p; q) =
KR(q; p) andKR(w;w) = (KR(�; w); KR(�; w))R = kKR(�; w)k
(R): The Schwarz inequality
implies that j!(w)j = j(!;KR(�; w))Rj �

p
KR(w;w)k!kR with equality being valid if !

is a constant multiple of KR(�; w): It then follows that bR(w) =
p
�KR(w;w):

The reader should be careful of the fact that the Bergman (pseudo-)metric sometimes
refers to the Hermitian form

P
jk @zj@�zk logKR(z; z)dzjd�zk in the theory of several complex

variables.
The following proposition was proved by Suita [12]. (For �nite Riemann surfaces, Hejhal

proved it earlier.)

Proposition 3.3. The inequality cR � bR holds for every Riemann surface R:
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Example 6 (span pseudo-metric). De�ne the space 
e(R) as the closed subspace of 
(R)
consisting of exact di�erentials with the same norm as 
(R): Set We = 
e(R)\W: Then
the pseudo-metric s := �We is called the span (pseudo-)metric. This is also normalized,
conformally invariant and monotone. By de�nition, we know sR = 0 if and only if
R 2 OAD:

Since 
e is a closed subspace of the Hilbert space 
(R); it has a reproducing kernel,
written by ~KR(p; q) = ~KR(z; w)dzd �w; which is called the exact (or reduced) Bergman

kernel. As before, we can prove that sR(z) =
q
� ~KR(z; z): It is clear that sR � bR: The

next result is due to Ahlfors and Beurling [1] in the case that R is planar. For the general
case, see [9].

Proposition 3.4. We have sR � cR for every Riemann surface R:

Since cR � kR; we also have the estimate sR � kR; which was used e�ectively in the
paper [2] by Beardon and Gehring.

Example 7 (quadratic di�erentials). Let A(R) be the set of integrable holomorphic qua-
dratic di�erentials (2-forms) ' = '(z)dz2 on R with norm

k'kA(R) =
ZZ

R

j'j =
ZZ

R

j'(z)jdxdy:

De�ne the class Q by Q(R) = f' 2 A(R); k'kA(R) � �g: Then the pseudo-metric q := �Q

is normalized, conformally invariant and monotone. (In this case, m = 2:) In particular,
by Theorem 1.2, we see qR � hR: It is essentially well known that qR = 0 if and only if R
is conformally equivalent to either bC ; C ; C � = C �f0g or C �f0; 1g: For more details of
this pseudo-metric, see [11].

For every element ! 2 
(R); we see !
2 = !(z)2dz2 belongs to A(R) and satis�es
k!
2kA(R) = k!k2
(R): Therefore, we have the following:
Proposition 3.5. The inequality bR � qR holds for every Riemann surface R:

The next example may be out of our formulation, however the way to understand
logarithmic capacity as in the following is sometimes important.

Example 8 (logarithmic capacity). Let Bp(R) be the set of multivalued holomorphic
functions f on R such that jf j is single-valued, bounded and satis�es f(p) = 0: Then, the
pseudo-metric r de�ned by

rR(p) = supfjdf j(p); f 2 Bp(R)g
is normalized, conformally invariant and monotone. We should note here that jdf j is also
single-valued for f 2 Bp(R):We will understand below that rR = 0 if and only if R 2 OG:

The quantity rR(q) is called the (logarithmic) capacity. In fact, let  be the Robin
constant of R at a point q with respect to a local coordinate �; in other words, Green's
function GR(p; q) of R with pole at q has the local behaviour

GR(p; q) = � log j�(p)� �(q)j+  + u(p)

near the point q; where u is a harmonic function near q with u(q) = 0: It suÆces to
see rR;�(w) = e�; where w = �(q): Set v(p) = GR(p; q) for p 2 R: First observe that
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! := 2(@v=@z)dz is a holomorphic 1-form on R�fqg and !�(z)+(z�w)�1 is holomorphic
near w = �(q): We �x a point p0 in R other than q: Then the holomorphic function

f(p) = exp

�
�
Z p

p0

! � v(p0)

�

is multivalued in R but has single-valued modulus and satis�es jf j = e�v < 1: Thus
f 2 Bq(R) and we can easily see df�(w) = e�:
Let g be an arbitrary multivalued holomorphic function on R with jgj being single-

valued and jgj < 1: Then  = � log jgj is positive and superharmonic in R: Since  � v
is harmonic near the point q or takes the value +1 at q; we conclude that  � v > 0 on
R by the minimum principle. This implies jdgj(q) � jdf j(q) for such a g: Now we have
rR;�(w) = jdf jR;�(w) = e�:
By this characterization, we have cR � rR for all Riemann surfaces R: We also have

the next result due to Burbea [3].

Proposition 3.6. For every Riemann surface R; the inequality rR � kR holds.

Suita [12] conjectured that rR � bR for all Riemann surfaces R: Although this conjecture
is not solved yet, recently Ohsawa [7] proved rR � KbR for all Riemann surfaces R with
an absolute constant K � p

750: (In [8], the estimate was improved to K � 16
p
2:)

Summarizing the above results, we have the chain of inequalities

aR � sR � cR �
�
rR � kR
bR � qR

�
� hR

for every Riemann surface R:
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