The 'maximal range' problem for complex polynomials

Stephan Ruscheweyh
Würzburg University, Germany
ruscheweyh@mathematik.uni-wuerzburg.de

Abstract

Let Ω be some domain in the complex plane, with $0 \in \Omega$, and \mathbb{D} the unit disk. For $n \in \mathbb{N}$ we set

$$
\mathcal{P}_{n}(\Omega):=\left\{P \in \mathcal{P}_{n}: P(0)=0, P(\mathbb{D}) \subset \Omega\right\}
$$

where \mathcal{P}_{n} denotes the set of complex polynomials of degree $\leq n$. The maximal range of degree n with respect to Ω is then defined as

$$
\Omega_{n}:=\bigcup_{P \in \mathcal{P}_{n}(\Omega)} P(\mathbb{D}) .
$$

We give a complete description of the extremal polynomials in $\mathcal{P}_{n}(\Omega)$, i.e. such P with $P(\partial \mathbb{D}) \cap\left(\partial \Omega_{n} \backslash \partial \Omega\right) \neq \emptyset$. This identification leads in many cases to a unified approach to new and old estimates for polynomials with certain range restrictions (most elemenary example: polynomials with positive real part in \mathbb{D}). Furthermore, if Ω is simply connected, the extremal polynomials are very sensible candidates for a polynomial approximation to the conformal mappings of \mathbb{D} onto Ω. We discuss special cases and an intriguing 'arc'-conjecture, which is closely related to a special subordination condition for polynomials.

