Global construction formula for quasiconformal automorphisms of the plane

Hiroshi Yanagihara
Department of Applied Science
Faculty of Engineering
Yamaguchi University
Tokiwadai, Ube 755
JAPAN

1 Introduction

When I was a graduate student, I was recommended to read carefully the book "Lectures on quasiconformal mappings" written by professor Ahlfors. Every chapter of this book is quite interesting and specially I was fascinated with Chapter V, i.e., the existence problem of q.c. mappings with a given Beltrami diffrential.

Problem. Let $\mu \in L^{\infty}(\mathbb{C})=L^{\infty}(\hat{\mathbb{C}})(\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\})$ with $\|\mu\|_{\infty}<1$. Construct the homeomorphism $f: \mathbb{C} \rightarrow \mathbb{C}$ (or $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ with $f(\infty)=\infty)$ satisfying 3 conditions,
(i) distributional derivatives $f_{z}, f_{\bar{z}} \in L_{l o c}^{2}(\mathbb{C})$
(ii) $f_{\bar{z}}=\mu f_{z}$ (Beltrami equation)
(iii) $f(0)=0, f(1)=1, f(\infty)=\infty$.

As you konow that the unique solution exists. We denote it by

$$
f^{\mu} .
$$

Many matehmaticians tried to solve this problem and I do not know precisely who gave first a correct answer. However in the book, professor Ahlfors gave an elegant method of construction by making use of a singular integral operator, nowadays called Ahlfors-Beurling operator.

Let us recall the method of construction of f^{μ} by Ahlfors and Bers, which is described in the book. Then I can explain a motivation of this research work.

2 Ahlfors-Bers construction

We need two integral operators. First one is defined by

$$
P_{0} h(z):=\frac{1}{2 \pi i} \iint \frac{z h(t)}{\mathbb{C}} d t \wedge d \bar{t}, \quad h \in L^{p}(\mathbb{C}), 2<p<\infty
$$

Note that $d t \wedge d \bar{t}=-2 i d t_{1} d t_{2}$. For each $z \in \mathbb{C}$ the integarl in the right side of the equation converges. Second one is a so-called singular integral operator defined by
$T_{0} h(z):=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \iint_{\mathbb{C}} \frac{h(t)}{(t-z)^{2}} d t \wedge d \bar{t}, \quad h \in L^{p}(\mathbb{C}), 1<p<\infty$.
Recently T_{0} is called the Ahlfors-Beurling operator. For almost all $z \in \mathbb{C}$ the limit in the right side of the equation coverges. Operator T_{0} is a bounded linear operator of $L^{p}(\mathbb{C})$ into itself. We have

$$
C_{p}=\sup _{0 \neq h \in L^{p}(\mathbb{C})} \frac{\left\|T_{0} h\right\|_{p}}{\|h\|_{p}} \rightarrow 1 \quad \text { as } p \rightarrow 2
$$

Operator P_{0} and T_{0} have nice properties. Equalities

$$
\left(P_{0} h\right)_{z}=T_{0} h, \quad\left(P_{0} h\right)_{\bar{z}}=h \quad \text { for } \quad h \in L^{p}(\mathbb{C}), 2<p<\infty
$$

hold in the sense of distribution.
Suppose that the solution $f=f^{\mu}$ can be expressed in a form

$$
f(z)=z+P_{0} h(z)
$$

for some $h \in L^{p}(\mathbb{C}), 2<p<\infty$. Then we have

$$
f_{z}=1+T_{0} h, \quad f_{\bar{z}}=h
$$

in the sense of distribution. Thus we have

$$
h=f_{\bar{z}}=\mu f_{z}=\mu\left(1+T_{0} h\right)
$$

and hence

$$
\left(1-\mu T_{0}\right) h=\mu
$$

For the moment we suppose

$$
\|\mu\|_{\infty}<\frac{1}{C_{p}}
$$

(since $C_{p} \rightarrow 1$ as $p \rightarrow 2$, this holds for all p sufficiently close to 2) and

$$
\mu \in L^{p}(\mathbb{C}) \text { for some } p \in(2, \infty)
$$

Then since
the operator norm $\left\|\mu T_{0}\right\| \leq\|\mu\|_{\infty}\left\|T_{0}\right\|=\|\mu\|_{\infty} C_{p}<1$, the equation

$$
\left(1-\mu T_{0}\right) h=\mu
$$

can be invertible by the Neumann series expansion,

$$
f_{\bar{z}}=h=\sum_{n=0}^{\infty}\left(\mu T_{0}\right)^{n} \mu
$$

and hence

$$
f(z)=z+P_{0} h(z)=z+\sum_{n=0}^{\infty} P_{0}\left(\left(\mu T_{0}\right)^{n} \mu\right)(z) .
$$

Also we can prove f is a automorphism of $\hat{\mathbb{C}}$ satisfies all of the desired properties except

$$
f(1)=1 \text {. }
$$

By noramlization we have
Theorem A If $\mu \in L^{\infty}(\mathbb{C})$ satisfies

$$
\|\mu\|_{\infty}<\frac{1}{C_{p}} \text { and } \mu \in L^{p}(\mathbb{C})
$$

for some $p \in(2, \infty)$, then

$$
f^{\mu}(z)=\frac{z+\sum_{n=0}^{\infty} P_{0}\left(\left(\mu T_{0}\right)^{n} \mu\right)(z)}{1+\sum_{n=0}^{\infty} P_{0}\left(\left(\mu T_{0}\right)^{n} \mu\right)(1)} .
$$

By making use of the above theorem, we can construct f^{μ} as follows,

1 Suppose $\operatorname{supp} \mu$ is compact. In this case since $\mu \in L^{p}(\mathbb{C})$ for all $p \in(1, \infty)$, we can construct f^{μ} by the above theorem.
2 Suppose $0 \notin \operatorname{supp} \mu$. In this case put

$$
\tilde{\mu}(z):=\left(\frac{z}{\bar{z}}\right)^{2} \mu\left(\frac{1}{z}\right) .
$$

Then $\operatorname{supp} \tilde{\mu}$ is compact and we can construct $f^{\tilde{\mu}}$. Also we can prove

$$
f^{\mu}(z)=\frac{1}{f^{\tilde{\mu}}(1 / z)}
$$

by calculating the Beltrami coefficient of the right hand side of the equation.

3 For general μ we decompose

$$
\mu=\mu_{1}+\mu_{2}, \quad \operatorname{supp} \mu_{1} \text { is compact and } 0 \notin \operatorname{supp} \mu_{2} .
$$

Put

$$
\lambda=\frac{\mu-\mu_{2}}{1-\mu \overline{\mu_{2}}} \frac{f_{z}^{\mu_{2}}}{\overline{\mu_{z}}} \circ\left(f^{\mu_{2}}\right)^{-1}
$$

Then $\|\lambda\|_{\infty}<1$ and $\operatorname{supp} \lambda$ is compact. Finally we can prove

$$
f^{\mu}=f^{\lambda} \circ\left(f^{\mu_{2}}\right)^{-1}
$$

by calculating its Beltrami coefficient.
The method of construction of f^{μ} is elegant, however
(i) Mapping f^{μ} is an automorphism of $\hat{\mathbb{C}}$. But the construction employ $L^{p}(\mathbb{C})$ and T_{0} and P_{0}. These are adapted to the complex plane \mathbb{C}, not to $\widehat{\mathbb{C}}$.
(ii) Construction for general μ is too complicated. This casuse a big difficulty on finding a variational formula of general order for q.c. mappings. Later we will give a typical variational formula for q.c. mappings as an application of our result.

Since f^{μ} is an automorphism of $\widehat{\mathbb{C}}, I$ belive that a more global result must exist.

3 A variant of Ahlfors-Beurling operator

Strategy

We want to find
$\mathcal{B}:$ a Banach space of functions in $\hat{\mathbb{C}}$ with $L^{\infty}(\mathbb{C}) \subset \mathcal{B}$
$T: \mathcal{B} \rightarrow \mathcal{B}$, linear and bounded
P : an opertor acts on \mathcal{B}
satisfying

$$
(P h)_{z}=T h, \quad(P h)_{\bar{z}}=h \quad \text { in the sense of distribution }
$$

and

$$
P h(0)=P h(1)=0 \forall h \in \mathcal{B} .
$$

If we can find \mathcal{B}, T and P, then probably we can prove

$$
\begin{aligned}
& f_{\bar{z}}^{\mu}=\sum_{n=0}^{\infty}(\mu T)^{n} \mu \\
& f^{\mu}(z)=z+\sum_{n=0}^{\infty} P(\mu T)^{n} \mu(z)
\end{aligned}
$$

for

$$
\mu \in L^{\infty}(\mathbb{C}) \text { with }\|\mu\|_{\infty}<\frac{1}{\|T\|}
$$

No assumption on $\operatorname{supp} \mu$ is necessary, however we need an extra condition $\|\mu\|_{\infty}<\|T\|^{-1}$. To find \mathcal{B}, T, P we start with the following,

Theorem 1 If f is a quasiconformal automorphism of $\widehat{\mathbb{C}}$ normalized by $f(0)=0, f(1)=1$ and $f(\infty)=\infty$, and its Beltrmai coeffcient μ satisfies $\|\mu\|_{\infty}<1 / 3$, then

$$
\begin{equation*}
f(z)=z+\frac{1}{2 \pi i} \iint \frac{z(z-1) f_{\bar{z}}(t)}{\mathbb{C}} d t \wedge d \bar{t} \tag{1}
\end{equation*}
$$

This can be derived from the Pompeiu formula

$$
f(z)=\frac{1}{2 \pi i} \int_{|\zeta|=1} \frac{f(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \iint_{|\zeta|<1} \frac{f_{\bar{\zeta}}(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta}
$$

and $f(0)=0, f(1)=1 f(\infty)=\infty$. The condition $\|\mu\|_{\infty}<1 / 3$ guarantees absolute convergence of the integral in (1)

The foumula (1) suggests a new oprator

$$
\begin{aligned}
P h(z) & :=\frac{1}{2 \pi i} \iint \frac{z(z-1) h(t)}{\mathbb{C}} d t \wedge d \bar{t} \\
& =P_{0} h(z)-\frac{1}{2 \pi i} \iint_{\mathbb{C}} \frac{z h(t)}{t(t-1)} d t \wedge d \bar{t}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& (P h)_{\bar{z}}=(P h)_{\bar{z}}=h \\
& (P h)_{z}=T_{0} h-\frac{1}{2 \pi i} \iint_{\mathbb{C}} \frac{h(t)}{t(t-1)} d t \wedge d \bar{t}
\end{aligned}
$$

So we put

$$
T h(z)=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \iint_{|t-z|>\varepsilon}\left\{\frac{1}{(t-z)^{2}}-\frac{1}{t(t-1)}\right\} h(t) d t \wedge d \bar{t} .
$$

Then we have

$$
(P h)_{z}=T h .
$$

Thus we could get good candidates of T and P. How about \mathcal{B} adapted to Riemann sphere $\hat{\mathbb{C}}$? The easiest and natural candidate is
$S^{p}(\hat{\mathbb{C}}):=$ the space of all Lebesgue measurable functions h on $\hat{\mathbb{C}}$ with $\left.\|h\|_{S^{p}(\hat{\mathbb{C}})}^{p}=\frac{1}{\pi} \iint \frac{|h(z)|}{\mathbb{C}}\left(1+|z|^{2}\right)^{2}\right) d x \wedge d y<\infty$.
Now we can state our theorems.

Theorem 2 Let $p \in(2, \infty)$ and $h \in S^{p}(\widehat{\mathbb{C}})$. Then
(i) Ph is Hölder continuous in \mathbb{C}.
(ii) $T h(z)$ exists for almost all $z \in \mathbb{C}$ and $T h \in S^{p}(\hat{\mathbb{C}})$. Furthermore

$$
T: S^{p}(\widehat{\mathbb{C}}) \rightarrow S^{p}(\hat{\mathbb{C}}) \text { is bounded and linear }
$$

(3) The equation

$$
(P h)_{z}=T h, \quad(P h)_{\bar{z}}=h
$$

hold in the sense of distribution.

Put

$$
D_{p}=\sup _{0 \neq h \in S^{p}(\hat{\mathbb{C}})} \frac{\|T h\|_{S^{p}(\hat{\mathbb{C}})}}{\|h\|_{S^{p}(\hat{\mathbb{C}})}}, \quad p \in(2, \infty) .
$$

Then
Theorem 3 Let $p \in(2, \infty)$. Then for $\mu \in L^{\infty}(\mathbb{C})$ with $\|\mu\|_{\infty}<$ $\min \left\{1 / 3,1 / D_{p}\right\}$ the expansion

$$
f_{\bar{z}}^{\mu}=\sum_{n=0}^{\infty}(\mu T)^{n} \mu
$$

holds, where the series converges absolutely in $S^{p}(\hat{\mathbb{C}})$. Furthermore the expansion

$$
f^{\mu}(z)=z+\sum_{n=0}^{\infty} P(\mu T)^{n} \mu(z)
$$

hold for each fixed $z \in \mathbb{C}$.

4 Boundedness of the oprator T

It suffices to show,
Proposition 4 There exists a constant $C(p)$ depending only on $p \in(2, \infty)$ such that

$$
\begin{equation*}
\|T h\|_{S^{p}(\mathbb{C})} \leq C(p)\|h\|_{S^{p}(\mathbb{C})}, \quad \forall h \in C_{c}^{2}\left(\mathbb{C}^{*}\right) \tag{2}
\end{equation*}
$$

where $C_{c}^{2}\left(\mathbb{C}^{*}\right)$ is the space of all C^{2}-functions h on \mathbb{C} with $h(0)=$ $h(1)=0$.

Sketch of Proof. For $|z| \leq 1$ we have

$$
\begin{aligned}
& T h(z) \\
= & \lim _{\varepsilon \downarrow 0} \frac{1}{2 \pi i} \iint_{|t-z|<\varepsilon,|t|<2}\left\{\frac{1}{(t-z)^{2}}-\frac{1}{t(t-1)}\right\} h(t) d t \wedge d \bar{t} \\
& +\frac{1}{2 \pi i} \iint_{|t|>2}\left\{\frac{1}{(t-z)^{2}}-\frac{1}{t(t-1)}\right\} h(t) d t \wedge d \bar{t} \\
= & T_{0}\left(\chi_{\mathbb{D}(2)} h\right)(z)-\frac{1}{2 \pi i} \iint_{|t|<2} \frac{h(t)}{t(t-1)} d t \wedge d \bar{t}+T\left(\left(1-\chi_{\mathbb{D}(2)}\right) h\right)(z) .
\end{aligned}
$$

We estimate $S^{p}(\mathbb{D})$ norm of each term in the right hand side of the above inequality. First we have

$$
\begin{aligned}
& \left\|T_{0}\left(\chi_{\mathbb{D}(2)} h\right)\right\|_{S^{p}(\mathbb{D})}^{p} \\
= & \frac{1}{\pi} \iint_{|z| \leq 1} \frac{\left|T_{0}\left(\chi_{\mathbb{D}(2)} h\right)(z)\right|^{p}}{\left.\left(1+|z|^{2}\right)\right)^{2}} d m(z) \\
\leq & \frac{1}{\pi} \iint_{|z| \leq 1}\left|T_{0}\left(\chi_{\mathbb{D}(2)} h\right)(z)\right|^{p} d m(z) \\
\leq & \frac{1}{\pi} \iint_{\mathbb{C}}\left|T_{0}\left(\chi_{\mathbb{D}(2)} h\right)(z)\right|^{p} d m(z)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{\pi}\left\|T_{0}\left(\chi_{\mathbb{D}(2)} h\right)\right\|_{L^{p}(\mathbb{C})}^{p} \\
& \leq \frac{C_{p}^{p}}{\pi}\left\|\chi_{\mathbb{D}(2)} h\right\|_{L^{p}(\mathbb{C})}^{p} \\
& \leq \frac{C_{p}^{p}}{\pi} \iint_{|t|<2}|h(t)|^{p} d m(t) \\
& \leq \frac{25 C_{p}^{p}}{\pi} \iint_{|t|<2} \frac{|h(t)|^{p}}{\left(1+|t|^{2}\right)^{2}} d m(t) \\
& \leq 25 C_{p}^{p}\|h\|_{S^{p}(\mathbb{C})}^{p}
\end{aligned}
$$

Next we have

$$
\begin{aligned}
& \left|T\left(\left(1-\chi_{\mathbb{D}(2)}\right) h\right)(z)\right| \\
\leq & \frac{1}{\pi} \iint_{|t|>2}\left|\frac{1}{(t-z)^{2}}-\frac{1}{t(t-1)}\right||h(t)| d m(t) \\
\leq & \frac{1}{\pi} \iint_{|t|>2} \frac{\left|2 z t-z^{2}-t\right|}{\left|(t-z)^{2} t(t-1)\right|}|h(t)| d m(t) \\
\leq & \frac{1}{\pi} \iint_{|t|>2} \frac{|2 z-1||t|+|z|^{2}}{(|t|-|z|)^{2}|t||t-1| \mid}|h(t)| d m(t) \\
\leq & \frac{1}{\pi} \iint_{|t|>2} \frac{3|t|+1}{2|t|(|t|-1)^{3}}|h(t)| d m(t) \\
\leq & \frac{1}{\pi} \iint_{|t|>2} \frac{(3|t|+1)\left(1+|t|^{2}\right)^{2 / p}}{|t|(|t|-1)^{3}} \frac{|h(t)|}{\left(1+|t|^{2}\right)^{2 / p}} d m(t) \\
\leq & \left\{\frac{1}{\pi} \iint_{|t|>2} \frac{(3|t|+1)\left(1+|t|^{2}\right)^{2 / p}}{|t|(|t|-1)^{3}}\right\}^{1 / q} \cdot\left\{\frac{1}{\pi} \iint_{|t|>2} \frac{|h(t)|^{p}}{\left(1+|t|^{2}\right)^{2}} d m(t)\right\}^{1 / p} \\
\leq & \text { const. }\|h\|_{S^{p}(\mathbb{C})} .
\end{aligned}
$$

Thus we have

$$
\left\|T\left(\left(1-\chi_{\mathbb{D}(2)}\right) h\right)\right\|_{S^{p}(\mathbb{D})} \leq \text { const. }\|h\|_{S^{p}(\mathbb{C})} .
$$

Similarly we have

$$
\begin{equation*}
\left|\frac{1}{2 \pi i} \iint_{|t|<2} \frac{h(t)}{t(t-1)}\right| \leq \text { const. }\|h\|_{S^{p}(\mathbb{C})} . \tag{3}
\end{equation*}
$$

Combining these inequalities we have

$$
\|T h\|_{S^{p}(\mathbb{D})} \leq \text { const. }\|h\|_{S^{p}(\mathbb{C})}
$$

For $|z|>1$ we have

$$
T h(z)=T \tilde{h}(1 / z)-2 z P \tilde{h}(1 / z)
$$

where

$$
\tilde{h}(z)=\left(\frac{z}{\bar{z}}\right)^{2} h(1 / z)
$$

Noting $\|\tilde{h}\|_{S^{p}(\mathbb{D})}=\|h\|_{S^{p}(\mathbb{C} \backslash \mathbb{D})}$ we have
$\|T \tilde{h}(1 / z)\|_{S^{p}(\mathbb{C} \backslash \mathbb{D})}=\|T \tilde{h}(z)\|_{S^{p}(\mathbb{D})} \leq \mathrm{const} .\|\tilde{h}\|_{S^{p}(\mathbb{C})}=\mathrm{const} .\|h\|_{S^{p}(\mathbb{C})}$.
Next we have $\|z P \tilde{h}(1 / z)\|_{S^{p}(\mathbb{C} \backslash \mathbb{D})}=\left\|z^{-1} P \tilde{h}(z)\right\|_{S^{p}(\mathbb{D})}$ and

$$
\begin{aligned}
& \frac{1}{z} P \tilde{h}(z) \\
= & \frac{1}{2 \pi i} \iint_{|t|<2} \frac{\tilde{h}(t)}{t(t-z)} d t \wedge d \bar{t}-\frac{1}{2 \pi i} \iint_{|t|<2} \frac{\tilde{h}(t)}{t(t-1)} d t \wedge d \bar{t} \\
& +\frac{1}{2 \pi i} \iint_{|t|>2} \frac{(z-1) \tilde{h}(t)}{t(t-1)(t-z)} d t \wedge d \bar{t} \\
= & \frac{P_{0}\left(\chi_{\mathbb{D}(2)} \tilde{h}\right)(z)-P_{0}\left(\chi_{\mathbb{D}(2)} \tilde{h}\right)(0)}{z}+A+B(z) \quad \text { (say). }
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
& |A| \leq \mathrm{const} .\|\tilde{h}\|_{S^{p}(\mathbb{C})}=\text { const. }\|h\|_{S^{p}(\mathbb{C})} \\
& \|B\|_{S^{p}(\mathbb{D})} \leq \mathrm{const} .\|\tilde{h}\|_{S^{p}(\mathbb{C})}=\mathrm{const} .\|h\|_{S^{p}(\mathbb{C})}
\end{aligned}
$$

To estimate the 1st term we need a lemma on Sobolev functions, Lemma 5 For $u \in W^{1, p}(\mathbb{C})$ with $p \in(2, \infty)$ we have

$$
\left\{\iint_{\mathbb{C}}\left|\frac{u(z)-u(0)}{z}\right|\right\}^{1 / p} \leq \frac{p}{p-2}\left\{\left\|u_{z}\right\|_{L^{p}(\mathbb{C})}+\left\|u_{\bar{z}}\right\|_{L^{p}(\mathbb{C})}\right\}
$$

Applying the lemma to $u(z)=P_{0}\left(\chi_{\mathbb{D}(2)} \tilde{h}\right)(z)$ we get

$$
\begin{aligned}
& \left\|\frac{P_{0}\left(\chi_{\mathbb{D}(2)} \tilde{h}\right)(z)-P_{0}\left(\chi_{\mathbb{D}(2)} \tilde{h}\right)(0)}{z}\right\|_{S^{p}(\mathbb{D})} \\
\leq & \frac{p}{p-2}\left\{\left\|P_{0}\left(\chi_{\mathbb{D}(2)} \tilde{h}\right)_{z}\right\|_{L^{p}(\mathbb{C})}+\left\|P_{0}\left(\chi_{\mathbb{D}(2)} \tilde{h}\right)_{\bar{z}}\right\|_{L^{p}(\mathbb{C})}\right\} \\
= & \frac{p}{p-2}\left\{\left\|T_{0}\left(\chi_{\mathbb{D}(2)} \tilde{h}\right)\right\|_{L^{p}(\mathbb{C})}+\left\|\chi_{\mathbb{D}(2)} \tilde{h}\right\|_{L^{p}(\mathbb{C})}\right\} \\
\leq & \frac{p}{p-2}\left\{C_{p}\left\|\chi_{\mathbb{D}(2)} \tilde{h}\right\|_{L^{p}(\mathbb{C})}+\left\|\chi_{\mathbb{D}(2)} \tilde{h}\right\|_{L^{p}(\mathbb{C})}\right\} \\
\leq & \text { const. }\|\tilde{h}\|_{S^{p}(\mathbb{C})}=\text { const. }\|h\|_{S^{p}(\mathbb{C})}
\end{aligned}
$$

Combining these inequalities we have

$$
\begin{aligned}
\| \mathbb{T}) h(z) \|_{S^{p}(\mathbb{C} \backslash \mathbb{D})} & =\|T \tilde{h}(1 / z)-2 z P \tilde{h}(1 / z)\|_{S^{p}(\mathbb{C} \backslash \mathbb{D})} \\
& =\left\|T \tilde{h}(z)-2 z^{-1} P \tilde{h}(z)\right\|_{S^{p}(\mathbb{D})} \\
& \leq\|T \tilde{h}\|_{S^{p}(\mathbb{D})}+2\left\|z^{-1} P \tilde{h}\right\|_{S^{p}(\mathbb{D})} \leq \mathrm{const} .\|h\|_{S^{p}(\mathbb{C})}
\end{aligned}
$$

Finally we have by (3) and (4)

$$
\begin{equation*}
\|T h\|_{S^{p}(\mathbb{C})} \leq\|T h\|_{S^{p}(\mathbb{D})}+\|T h\|_{S^{p}(\mathbb{C} \backslash \mathbb{D})} \leq \text { const. }\|h\|_{S^{p}(\mathbb{C})} \tag{5}
\end{equation*}
$$

5 Application on variational formula for qasiconfromal mappings

Suppose that $\mu_{t}=t \mu_{1}+t^{2} \mu_{2}+\cdots$, where the series converges absolutely in $L^{\infty}(\mathbb{C})=S^{\infty}(\widehat{\mathbb{C}})$. The Ahlfors-Bers theorem asserts that if μ_{t} varies holomorphically on t, then $f^{\mu_{t}}$ varies also holomorphically on t. Thus we have

$$
\begin{equation*}
f^{\mu_{t}}(z)=z+t A_{1}(z)+t^{2} A_{2}(z)+\cdots . \tag{6}
\end{equation*}
$$

Since we have from Theorem 3

$$
\begin{aligned}
f^{\mu_{t}}(z) & =z+P \mu_{t}(z)+P\left(\mu_{t} T\right) \mu_{t}(z)+\cdots \\
& =z+t P \mu_{1}(z)+t^{2} P \mu_{2}(z)+t^{2} P \mu_{1} T \mu_{1}+O\left(t^{3}\right) .
\end{aligned}
$$

We can easily have

$$
\begin{aligned}
A_{1}(z) & =P \mu_{1}(z) \\
A_{2}(z) & =P \mu_{2}(z)+P \mu_{1} T \mu_{1}(z) \\
& \vdots
\end{aligned}
$$

Of course we can also calculate higher terms.

References

[1] L. Ahlfors, Conformality with respect to Riemann metrics, Ann. Acad. Scie. Fenn. Saraja esries A. MATHEMATICAPHYSICA 206, (1955).
[2] L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostland, Princeton, 1966.
[3] L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. 72(1960), 385-404.
[4] L. Bers and H.L. Royden, Holomorphic families of injections, Acta. Math. 157(1986), 259-286.
[5] Ch. Pommerenke and B. Rodin, Holomophic families of Riemann mapping functions, J. of Math. of Kyoto Univ, 26, (1986), 13-22.
[6] L. F. Reséndis, Variations of univalent functions due to holomorphic motions, J. Analyse Math. 65(1995), 95-124.
[7] B. Rodin, Behaviour of the Riemann mapping function under complex analytic deformations of the plane, Complex Variables 5, (1986), 189-195.
[8] H. Yanagihara, Quasiconformal variations and local minimality of the Ahlfors-Grunsky functions, J. Analyse Math. 51(1988), 30-61.
[9] W. P. Ziemer, Weakly Differentiable Functions, Springer Verlag, New York, 1989.

