Lindelöf theorems for monotone Sobolev functions

Yoshihiro Mizuta
joint work with Toshihide Futamura

Jan. 8, 2003

1 Introduction

Let $\mathbf{R}^{n}(n \geq 2)$ denote the n-dimensional Euclidean space. We use the notation \mathbf{D} to denote the upper half space of \mathbf{R}^{n}, that is,

$$
\mathbf{D}=\left\{x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right): x_{n}>0\right\} .
$$

Denote by $B(x, r)$ the open ball centered at x with radius r, and set $\sigma B(x, r)=$ $B(x, \sigma r)$ for $\sigma>0$ and $S(x, r)=\partial B(x, r)$.

Let μ be a (Radon) measure on \mathbf{R}^{n} satisfying the doubling condition :

$$
\mu(2 B) \leq M \mu(B)
$$

for every ball $B \subset \mathbf{R}^{n}$. If $1<p<\infty$ and G is a bounded open set in \mathbf{R}^{n}, then we define the (p, μ)-capacity by

$$
\operatorname{cap}_{p, \mu}(E ; G)=\inf \int_{G}|f(y)|^{p} d \mu(y)
$$

where the infimum is taken over all Borel measurable functions f such that

$$
\int_{G}|x-y|^{1-p} f(y) d y \geq 1 \quad \text { for all } x \in E .
$$

We write $\operatorname{cap}_{p, \mu}(E)=0$ if $\operatorname{cap}_{p, \mu}(E \cap G ; G)=0$ for all bounded open set G in \mathbf{R}^{n}.
Let $w \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$ be nonnegative. For $q>1$, we say that $w \in A_{q}$ if there exists a constant $C>0$ such that

$$
\sup _{B}\left(f_{B} w(y) d y\right)\left(f_{B} w(y)^{1 /(1-q)} d y\right)^{q-1}<C
$$

where the supremum is taken over all balls B in \mathbf{R}^{n}.

A continuous function u on \mathbf{D} is called monotone in the sense of Lebesgue (see [5]) if for every relatively compact open set $G \subset \mathbf{D}$,

$$
\max _{\bar{G}} u=\max _{\partial G} u \quad \text { and } \quad \min _{\bar{G}} u=\min _{\partial G} u .
$$

If u is a monotone Sobolev function on \mathbf{D} and $p>n-1$, then

$$
\begin{equation*}
\left|u(x)-u\left(x^{\prime}\right)\right| \leq M r\left(\frac{1}{r^{n}} \int_{B(y, 2 r)}|\nabla u(z)|^{p} d z\right)^{1 / p} \tag{1}
\end{equation*}
$$

for all $x, x^{\prime} \in B(y, r)$, whenever $B(y, 2 r) \subset \mathbf{D}$ (see [6, Theorem 1] and [4, Theorem 2.8]). For further results of monotone functions, we refer to [3], [7], [13] and [15].

Manfredi-Villamor [8] proved the following result.
THEOREM A. Let $n-1<p \leq n$ and w be an A_{q} weight for some $1<q<p /(n-1)$. Let u be a monotone Sobolev function on the unit ball \mathbf{B} satisfying

$$
\begin{equation*}
\int_{\mathrm{B}}|\nabla u(z)|^{p} w(z) d z<\infty \tag{2}
\end{equation*}
$$

Then, for each $\varepsilon>0$, there exists an open set U in \mathbf{R}^{n} satisfying $\operatorname{cap}_{p, w}(U)<\varepsilon$ such that for every $x_{0} \in \partial \mathbf{B} \backslash U$, if we have a curve $\gamma \subset \mathbf{B}$ ending at x_{0} with

$$
\lim _{x \rightarrow x_{0}, x \in \gamma} u(x)=\alpha,
$$

then it follows that u has a nontangential limit α at x_{0}.

Our aim in this talk is to improve their result.

2 Nontangential limits

Let μ be a measure on \mathbf{R}^{n} satisfying the doubling condition and

$$
\begin{equation*}
\frac{\mu\left(B^{\prime}\right)}{\mu(B)} \geq M\left(\frac{\operatorname{diam}\left(B^{\prime}\right)}{\operatorname{diam}(B)}\right)^{s} \tag{3}
\end{equation*}
$$

for all $B^{\prime}=B\left(\xi^{\prime}, r^{\prime}\right)$ and $B=B(\xi, r)$ with $\xi^{\prime}, \xi \in \partial \mathbf{D}$ and $B^{\prime} \subset B$, where $s>1$ and $\operatorname{diam}(B)$ denotes the diameter of B.

A pair $(u, g) \in L_{l o c}^{1}(\mathbf{D} ; \mu) \times L_{l o c}^{p}(\mathbf{D} ; \mu)$ is called monotone if u is continuous on D and

$$
\begin{equation*}
\left|u(x)-u_{B}\right| \leq M r\left(\frac{1}{\mu(\sigma B)} \int_{\sigma B} g(z)^{p} d \mu(z)\right)^{1 / p} \tag{4}
\end{equation*}
$$

for every $x \in B$ with $\sigma B \subset \mathbf{D}$, where $\sigma>1, B=B(y, r)$ and

$$
u_{B}=f_{B} u(y) d \mu(y)=\frac{1}{\mu(B)} \int_{B} u(y) d \mu(y)
$$

Our first aim is to establish the nontangential limit result.
Theorem 1. Let (u, g) be a monotone pair. Define

$$
\begin{equation*}
E_{1}=\left\{\xi \in \partial \mathbf{D}: \int_{B(\xi, 1) \cap \mathbf{D}}|\xi-y|^{1-n}|\nabla u(y)| d y=\infty\right\} \tag{5}
\end{equation*}
$$

and

$$
E_{2}=\left\{\xi \in \partial \mathbf{D}: \limsup _{r \rightarrow 0}\left(r^{-p} \mu(B(\xi, r))\right)^{-1} \int_{B(\xi, r) \cap \mathbf{D}} g(y)^{p} d \mu(y)>0\right\} .
$$

Then u has a nontangential limit at every $\xi \in \partial \mathbf{D}-\left(E_{1} \cup E_{2}\right)$.

For a proof of Theorem 1, it suffices to note the following easy lemma.
Lemma 1. If $B=B(a, r)$ is a ball and $B \subset G$, then

$$
\operatorname{cap}_{p, \mu}(B ; G) \leq M r^{-p} \mu(B)
$$

REMARK 1. If

$$
\begin{equation*}
\int_{\mathbf{D}}|\nabla u(x)|^{p} d \mu(x)<\infty \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{D}} g(x)^{p} d \mu(x)<\infty \tag{7}
\end{equation*}
$$

then we see that $E_{1} \cup E_{2}$ is of $\operatorname{cap}_{p, \mu}$-capacity zero.
Remark 2. Let $1<q<p /(n-1)$. Let w be a Muckenhoupt $\left(A_{q}\right)$ weight, and define

$$
d \mu(y)=w(y) d y
$$

If u is monotone in the sense of Lebesgue, then $(u,|\nabla u|)$ satisfies the monotonicity property (4) by applying Hölder's inequality to (1) with p replaced by p / q (see also Manfredi-Villamor [8]).

Corollary 1. Let $n-1<p \leq n$ and w be an A_{q} weight for some $1<q<p /(n-1)$. Let u be a monotone Sobolev function on \mathbf{D} satisfying (2). Then there exists a set $E \subset \partial \mathbf{D}$ satisfying $\operatorname{cap}_{p, w}(E)=0$ such that u has a nontangential limit at every $x_{0} \in \partial \mathbf{D} \backslash E$.

3 Lindelöf theorem

Now we show the Lindelöf theorem for monotone Sobolev functions.
ThEOREM 2. Let (u, g) be a monotone pair with g satisfying (7). Suppose $p>s-1$, and set

$$
E=\left\{\xi \in \partial \mathbf{D}: \limsup _{r \rightarrow 0}\left(r^{-p} \mu(B(\xi, r))\right)^{-1} \int_{B(\xi, r) \cap \mathbf{D}} g(z)^{p} d \mu(z)>0\right\}
$$

If $\xi \in \partial \mathbf{D}-E$ and there exists a curve γ in \mathbf{D} tending to ξ along which u has a finite limit, then u has a nontangential limit at ξ.

Remark 3. In Theorem2, if we consider

$$
h(r)=\sup _{0<t<r, \xi \in \partial \mathbf{D}} r^{-p} \mu(B(\xi, r))
$$

then we see that $H_{h}(E)=0$.
REmARK 4. Let $1<q<p /(n-1)$. Let w be a Muckenhoupt $\left(A_{q}\right)$ weight, and define

$$
d \mu(y)=w(y) d y
$$

Then (3) holds for $s=n q$. In this case, however, we do not need the condition that $p>s-1$.

Corollary 2. Let $1<q<p /(n-1)$ and w be a Muckenhoupt $\left(A_{q}\right)$ weight. Suppose u is a monotone Sobolev function on \mathbf{D} satisfying (6), and set

$$
E=\left\{\xi \in \partial \mathbf{D}: \limsup _{r \rightarrow 0}\left(r^{-p} w(B(\xi, r))\right)^{-1} \int_{B(\xi, r) \cap \mathbf{D}}|\nabla u(z)|^{p} w(z) d z>0\right\}
$$

If $\xi \in \partial \mathbf{D}-E$ and there exists a curve γ in \mathbf{D} tending to ξ along which u has a finite limit, then u has a nontangential limit at ξ.

Corollary 3. Let u be a monotone Sobolev function on \mathbf{D} satisfying

$$
\begin{equation*}
\int_{\mathbf{D}}|\nabla u(z)|^{p} z_{n}^{\alpha} d z<\infty \tag{8}
\end{equation*}
$$

where $p>n-1$ and $0 \leq n+\alpha-p<1$. Define

$$
E_{n+\alpha-p}=\left\{\xi \in \partial \mathbf{D}: \limsup _{r \rightarrow 0} r^{p-\alpha-n} \int_{B(\xi, r) \cap \mathbf{D}}|\nabla u(z)|^{p} z_{n}^{\alpha} d z>0\right\}
$$

If $\xi \in \partial \mathbf{D}-E_{n+\alpha-p}$ and there exists a curve γ in \mathbf{D} tending to ξ along which u has a finite limit, then u has a nontangential limit at ξ.

REMARK 5. We know that $E_{n+\alpha-p}$ has $(n+\alpha-p)$-dimensional Hausdorff measure
 the author's book [13].

Remark 6. Let $w(y)=\left|y_{n}\right|^{\alpha}$ and $q>1$. Then $w \in A_{q}$ if and only if $-1<\alpha<q-1$. In this case, Corollary 2 may not imply Corollary 3 when $n \geq 3$.

References

[1] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688.
[2] J. Heinonen, Lectures on analysis on metric spaces, Springer, 2001.
[3] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, 1993.
[4] P. Koskela, J. J. Manfredi and E. Villamor, Regularity theory and traces of \mathcal{A} harmonic functions, Trans. Amer. Math. Soc. 348 (1996), 755-766.
[5] H. Lebesgue, Sur le probléme de Dirichlet, Rend. Cir. Mat. Palermo 24 (1907), 371-402.
[6] J. J. Manfredi, Weakly monotone functions, J. Geom. Anal. 4 (1994), 393-402.
[7] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions, J. Geom. Anal. 6 (1996), 433-444.
[8] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions in weighted Sobolev spaces, Illinois J. Math. 45 (2001), 403-422.
[9] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255-292.
[10] N. G. Meyers, Taylor expansion of Bessel potentials, Indiana Univ. Math. J. 23 (1974), 1043-1049.
[11] Y. Mizuta, On the boundary limits of harmonic functions, Hiroshima Math. J. 18 (1988), 207-217.
[12] Y. Mizuta, Tangential limits of monotone Sobolev functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 20 (1995), 315-326.
[13] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
[14] M. Vuorinen, On functions with a finite or locally bounded Dirichlet integral, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 177-193.
[15] M. Vuorinen, Conformal geometry and quasiregular mappings, Lectures Notes in Math. 1319, Springer, 1988.

The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan

