Conformal imbeddings of domains

加計国際学術交流センター，2003 1
Hyvää päivää！米谷 文男 Maitani Fumio
京都工芸繊維大学 Kyoto Institute of technology

Oikawa＇s problem I

Welding of polygons and the type of Riemann surfaces were considered by Nevan－ linna，Oikawa and others．We are concerned with the relation of weldings and the moduli of Riemann surfaces．Oikawa studied this subject and got some results which he didn＇t publish．We follow him．A square in the complex plane can be confor－ mally welded into various ring domains by a specific kind of identification of a pair of opposite sides．We consider the range of these moduli．Oikawa gave an estimate for the range of these moduli and asked whether it is the best possible or not．

Let

$$
\begin{aligned}
& Q=\{x+i y: 0<x<1,0<y<1\} \\
& L_{+}=\{x+i y: 0<x<1, y=1\} \\
& L_{-}=\{x+i y: 0<x<1, y=0\} \\
& \phi_{0}(x+i)=x(0<x<1) \\
& \phi: L_{+} \longrightarrow L_{-} \text {be a homeomorphism such that } \phi \circ \phi_{0}^{-1}(x) \text { is strictly increasing, }
\end{aligned}
$$

G ：a ring domain，
C ：a Jordan curve in G joining two boundary component of G ，
$f: Q \cup L_{+} \cup L_{-} \rightarrow G$ a continuous mapping．
(G, C, f) is a conformal welding obtained by ϕ
if f is conformal in $Q, f \circ \phi=f$ on L_{+}，and $f\left(L_{+}\right)=f\left(L_{-}\right)=C$ ．
We call ϕ a welding function．A conformal welding by ϕ is unique，if for $\forall\left(G_{i}, C_{i}, f_{i}\right)_{i=1,2}$ of conformal weldings obtained by $\phi, f_{2} \circ f_{1}^{-1}$ is a conformal mapping from G_{1} to G_{2} ． Let $M(G)=\log \left(R_{2} / R_{1}\right)$ be the modulus of G ，where G is conformally equivalent to $\left\{z: R_{1}<|z|<R_{2}\right\}$ ．For a welding function ϕ ，set $M_{\phi}=\{M(G):(G, C, f)$ is a conformal welding by $\phi\}$ ．

Oikawa [5] proved the following three theorems.

Theorem A

$M_{\phi}=\{2 \pi\}$ if and only if $\phi=\phi_{0}$.

Theorem B

Let Φ be the set of welding functions ϕ, then $\bigcup_{\phi \in \Phi} M_{\phi}=(0,2 \pi]$.

Theorem C

$$
M_{\phi} \subset\left[2 \pi \int_{0}^{1} \frac{\min \left(\phi^{\prime}(x), 1\right)}{1+(\phi(x)-x)^{2}} d x, 2 \pi\right] .
$$

Further Oikawa [5] presented the following problem.
Find a welding function ϕ satisfying

$$
M_{\phi} \supset\left(2 \pi \int_{0}^{1} \frac{\min \left(\phi^{\prime}(x), 1\right)}{1+(\phi(x)-x)^{2}} d x, 2 \pi\right) .
$$

We obtain the following.

Theorem

There are a welding function ϕ and $\epsilon>0$ such that $M_{\phi} \supset(0, \epsilon)$.

Theorem

For any $\phi \neq \phi_{0}$, there is an $m<2 \pi$ such that $M_{\phi} \subset(0, m]$.

Lemma

Let A be an annulus and K_{n} be constructed as above. For any $\epsilon>0$, there exists a q.c. mapping h on A which is conformal on $A-K_{n}$ and satisfies $M(h(A))<\epsilon$.

Oikawa's problem II

Let

$$
A=\{z ; a<|z|<1\} \text { and } B=\{z ; 1<|z|<b\}
$$

φ be a continuous function on \mathbf{R} such that

$$
\varphi\left(\theta_{1}\right)<\varphi\left(\theta_{2}\right) \text { if } \theta_{1}<\theta_{2}, \varphi(\theta+2 \pi)=\varphi(\theta)+2 \pi
$$

We call φ a conformal welding function if
$\exists g: A \cup B \rightarrow A(\varphi, g)-\gamma$ conformal mapping s.t. $\lim _{A \ni z \rightarrow e^{i \theta}} g(z)=\lim _{B \ni z \rightarrow e^{i \varphi(\theta)}} g(z)$, where $A(\varphi, g)=\left\{w ; 1 \leq|w| \leq e^{M(\varphi, g)}\right\}, \gamma$ is a Jordan closed curve in $A(\varphi, g)$. We call g a mapping giving (conformal) structure from φ. Set

$$
V(\varphi)=\bigcup\{M(\varphi, g) ; g \text { is a mapping giving a structure from } \varphi\}
$$

About this set, K. Oikawa asked the following question.
Is there a conformal welding function φ such that $V(\varphi)$ is a point but it has different conformal structures.

Suppose that g and g^{\prime} give different structure from φ. Then
$\exists \tilde{F}$: homeomorphism on \mathbf{C} s.t.
\tilde{F} is quasiconformal on $\mathbf{C}-\gamma, \tilde{F}=g^{\prime} \circ g^{-1}$ on $A(\varphi, g)$.
Further, $\exists h$: quasiconformal mapping on \mathbf{C} s.t. $f=h \circ \tilde{F}$ is conformal on $\mathbf{C}-\gamma$.
Let G_{1} be exterior of γ, G_{2} inside of γ, U^{*} exterior of unit disk, U unit disk,

$$
\begin{aligned}
& \varphi_{1}(z)=\sum_{n=-1}^{\infty} a_{n} z^{-n}: U^{*} \rightarrow G_{1}, \text { conformal, } \\
& \varphi_{2}(z)=\sum_{n=0}^{\infty} b_{n} z^{n}: U \rightarrow G_{2}, \text { conformal, }
\end{aligned}
$$

$$
G_{R}(R>1) \text { : bounded region enclosed by } \varphi_{1}(|z|=R) .
$$

Then the area

$$
\left|G_{R}\right|=\pi\left\{\left|a_{-1}\right|^{2} R^{2}-\sum_{n=1}^{\infty} n \frac{\left|a_{n}\right|^{2}}{R^{2 n}}\right\},\left|\bar{G}_{1}\right|=\lim _{R \rightarrow 1+}\left|G_{R}\right|=\pi\left\{\left|a_{-1}\right|^{2}-\sum_{n=1}^{\infty} n\left|a_{n}\right|^{2}\right\} .
$$

For $G_{r}(r<1)$: bounded region enclosed by $\varphi_{2}(|z|=r)$,

$$
\left|\underline{G}_{1}\right|=\lim _{r \rightarrow 1-}\left|G_{r}\right|=\pi \sum_{n=1}^{\infty} n\left|b_{n}\right|^{2} .
$$

If the area of γ vanishes, i.e. $\left|\bar{G}_{1}\right|=\left|\underline{G}_{1}\right|$. Hence

$$
\left|a_{-1}\right|^{2}=\sum_{n=1}^{\infty} n\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) .
$$

Simillary denote

$$
\psi_{1}(z)=\sum_{n=-1}^{\infty} A_{n} z^{-n}=f \circ \varphi_{1}, \quad \psi_{2}(z)=\sum_{n=0}^{\infty} B_{n} z^{n}=f \circ \varphi_{2},
$$

$\Omega_{R}(R>1)$: bounded region enclosed by $\psi_{1}(|z|=R)$,
$\Omega_{r}(r<1)$: bounded region enclosed by $\psi_{2}(|z|=r)$.
We have

$$
\begin{aligned}
& \left|\bar{\Omega}_{1}\right|=\lim _{R \rightarrow 1+}\left|\Omega_{R}\right|=\pi\left\{\left|A_{-1}\right|^{2}-\sum_{n=1}^{\infty} n\left|A_{n}\right|^{2}\right\}, \\
& \left|\underline{\Omega}_{1}\right|=\lim _{r \rightarrow 1-}\left|\Omega_{r}\right|=\pi \sum_{n=1}^{\infty} n\left|B_{n}\right|^{2} .
\end{aligned}
$$

When the area of $f(\gamma)$ vanishes, we have also

$$
\left|A_{-1}\right|^{2}=\sum_{n=1}^{\infty} n\left(\left|A_{n}\right|^{2}+\left|B_{n}\right|^{2}\right) .
$$

Let a point $t \in \mathbf{C}$ be fixed. Set $g(\zeta)=f(\zeta)+t \zeta$,

$$
Q=\sum_{n=1}^{\infty} n B_{n} \overline{b_{n}}+\sum_{n=-1}^{\infty} n A_{n} \overline{a_{n}} .
$$

Then

$$
(d g, d g)_{G_{R}-\gamma}=2 \pi\left\{2 \Re \bar{t} Q-\sum_{n=-1}^{\infty} n\left|A_{n}+t a_{n}\right|^{2} R^{-2 n}\right\} .
$$

We remark the following.

Lemma

$$
Q=\sum_{n=1}^{\infty} n B_{n} \overline{b_{n}}+\sum_{n=-1}^{\infty} n A_{n} \overline{a_{n}} \neq 0 .
$$

Lemma

$$
\left|\Omega_{R}\right|-\frac{1}{2}(d g, d g)_{G_{R}-\gamma}=-2 \pi \Re \bar{t} Q
$$

Let

$$
S(f)=\left\{\frac{f\left(\zeta_{1}\right)-f\left(\zeta_{2}\right)}{\zeta_{1}-\zeta_{2}}:\left(\zeta_{1}, \zeta_{2}\right) \in \mathbf{C} \times \mathbf{C}-\{(\zeta, \zeta)\}_{\zeta \in \mathbf{C}}\right\}
$$

We remark the following.

Theorem

$$
\{t: \Re \bar{t} Q<0\} \subset S(f) .
$$

If $-t$ does not belong to $S(f), f\left(\zeta_{1}\right)+t \zeta_{1} \neq f\left(\zeta_{2}\right)+t \zeta_{2}$ for every pair $\left(\zeta_{1}, \zeta_{2}\right), \zeta_{1} \neq \zeta_{2}$. Then $g(\zeta)=f(\zeta)+t \zeta$ is univalent.
When $-t \in \mathbf{C}-S(f)$ and $\Re \bar{t} Q<0, g$ is univalent and the image area of γ by g is positive. Therefore

Theorem If $(\mathbf{C}-S(f)) \cap\{t ; \Re \bar{t} Q>0\} \neq \emptyset$, there exists a homeomorphism g on \mathbf{C} such that g is conformal on $\mathbf{C}-\gamma$ and area of $g(\gamma)$ is positive. $V(\varphi)$ is not a point.

Riemann surface and Teichmüller space

Let R be a finite compact bordered Riemann surface of genus p with m boundary components, \hat{R} be the doubled Riemann surface of R, this genus is $2 p+m-1$, i be an anticonformal mapping (involution) on $\hat{R} i \circ i=i d e n t i t y$ and $R \cup i(R)=\hat{R}$. Let

$$
T\left(R_{0}\right)=\left\{(R, g) ;{ }^{\exists} g: R_{0} \rightarrow R \quad \text { q.c. }\right\} / \sim .
$$

where R is a finite compact bordered Riemann surface,

$$
\left(R_{1}, g_{1}\right) \sim\left(R_{2}, g_{2}\right) \Longleftrightarrow{ }^{\exists} h: R_{1} \rightarrow R_{2} \text { conformal s.t. } g_{2}^{-1} \circ h \circ g_{1} \simeq \text { identity : homotopic. }
$$

$T\left(R_{0}\right)$ is reduced Teichmüller space of R_{0} and $6 p-6+3 m$ (except for $p=0, m=$ $0,1,2$) dimensional real analytic manifold.

Embedable Riemann surface

For $R_{i}=\left(R_{i}, g_{i}\right) \in T\left(R_{0}\right)$, set

$$
\begin{aligned}
T\left(R_{0} ; R_{i}\right)=\left\{R_{j}=\left(R_{j}, g_{j}\right) \in T\left(R_{0}\right) ;{ }^{\exists} h_{j}: R_{i} \rightarrow R_{j}:\right. \text { conformally into } \\
\text { s.t. } \left.g_{j}^{-1} \circ f_{j} \circ g_{i} \simeq \text { identity }: \text { homotopic }\right\} .
\end{aligned}
$$

Remark.

f_{j} is conformal on $\partial R_{i}, h_{j}\left(\partial R_{i}\right)$: analytic curves on $R_{j}, m\left(R_{j}-f_{j}\left(R_{i}\right)\right)>0$.
Quasiconformal deformation on $R_{j}-h_{j}\left(R_{i}\right)$ covers a neighborhood V of R_{j} in $T\left(R_{0}\right)$. Hence $V \subset T\left(R_{0} ; R_{i}\right), T\left(R_{0} ; R_{i}\right)$ is open.

For $\left(R_{j}, g_{j}\right) \in T\left(R_{0} ; R_{i}\right)$, set

$$
C E\left(R_{i}, R_{j}\right)=\left\{f ; f: R_{i}^{\circ} \rightarrow R_{j}^{\circ}: \text { conformally into s.t. } g_{j}^{-1} \circ f \circ g_{i} \simeq \text { identity }: \text { homotopic }\right\},
$$

where R_{k}° denotes the interior of R_{k}.

Optimal conformal embedding

Let R_{j}^{\prime} be a subdomain of R_{j}° s.t. every component of $R_{j}^{\circ}-R_{j}^{\prime}$ is doubly connected,

$$
Z\left(R_{j}^{\circ}, R_{j}^{\prime}\right)=\left\{\gamma \subset R_{j}^{\circ}-R_{j} ;\right.
$$

rectifiable closed Jordan curves γ divides every component of $\left.R_{j}^{\circ}-R_{j}\right\}$,
$\lambda\left(Z\left(R_{j}^{\circ}, R_{j}^{\prime}\right)\right)$ be the extremal length of $Z\left(R_{j}^{\circ}, R_{j}^{\prime}\right)$ i.e.

$$
\lambda\left(Z\left(R_{j}^{\circ}, R_{j}^{\prime}\right)\right)=\sup _{\rho}\left\{\frac{1}{A(\rho)} ; \rho\right. \text { is a Borel measurable conformal density }
$$

s.t. $\left.\quad \inf f_{\gamma \in Z\left(R_{j}^{\circ}, R_{j}^{\prime}\right)}\left\{\int_{\gamma} \rho(z)|d z|\right\} \geq 1\right\}$, where $A(\rho)=\iint_{R_{j}} \rho^{2}(x+i y) d x d y$.

For $f \in C E\left(R_{i}, R_{j}\right), \lambda\left(Z\left(R_{j}^{\circ}, f\left(R_{i}^{\circ}\right)\right)\right)=\lambda\left(Z\left(R_{j}^{\prime \circ}, h_{j} \circ f \circ h_{i}^{-1}\left(R_{i}^{\prime \circ}\right)\right)\right)$. Set

$$
B\left(R_{i}, R_{j}\right)=\inf \left\{\lambda\left(Z\left(R_{j}^{\circ}, f\left(R_{i}^{\circ}\right)\right)\right) ; f \in C E\left(R_{i}, R_{j}\right)\right\}
$$

where $B\left(R_{i}, R_{j}\right)=\infty$ if $C E\left(R_{i}, R_{j}\right)$ is empty.
Theorem. Suppose $B\left(R_{i}, R_{j}\right)<\infty$.
${ }^{\exists} f_{i j} \in C E\left(R_{i}, R_{j}\right)$ s.t. $\lambda\left(Z\left(R_{j}^{\circ}, f_{i j}\left(R_{i}^{\circ}\right)\right)\right)=B\left(R_{i}, R_{j}\right)$. The boundary of $f_{i j}\left(R_{i}^{\circ}\right)$
consists of trajectories of a quadratic holomorphic differential φ_{j} on R_{j} ；hence the boundary is analytic．
$f_{i j}\left(R_{i}\right)$ ：optimal conformal embedding from R_{i} to R_{j} ．
H be a harmonic function on $R_{j}-f_{i j}\left(R_{i}\right)$ s．t．$H= \begin{cases}1 & \text { on } \partial R_{j} \\ 0 & \text { on } \partial f_{i j}\left(R_{i}\right) .\end{cases}$
Then

$$
\left(\frac{\partial}{\partial z} H\right)^{2} d z^{2}=\varphi_{j} \text { on } R_{j}-f_{i j}\left(R_{i}\right) .
$$

For a $t(0<t \leq 1)$

$$
R_{j t}=f_{i j}\left(R_{i}\right) \cup\left\{z \in R_{j}-f_{i j}\left(R_{i}\right) ; H(z) \leq t\right\} \in T\left(R_{0} ; R_{i}\right) .
$$

$R_{j t}$ and $R_{j 1}=R_{j}$ are arcwise connected in $T\left(R_{0} ; R_{i}\right)$ ．
Proposition．Let $6 p-6+3 m>0$ ．Then
$T\left(R_{0} ; R_{i}\right)$ is a $6 p-6+3 m$ dimensional real analytic submanifold of $T\left(R_{0}\right)$ ．

Ishida＇s example

Let

$$
\begin{aligned}
& G=\hat{\mathbf{C}}-[-1,0] \cup[1,2] \cup[3, \infty], \\
& G_{\epsilon}=\hat{\mathbf{C}}-[-1,0] \cup[1,2+\epsilon] \cup[3-\epsilon . \infty]\left(0<\epsilon<\frac{1}{2}\right) .
\end{aligned}
$$

There is no subdomain G^{\prime} of G such that G^{\prime} is conformal to G_{ϵ} and $G-G^{\prime}$ has a positive measure．

Denjoy domain

Let

$$
D\left(a_{i}, b_{i}\right)=\hat{\mathbf{C}}-\cup_{i=1}^{n}\left[a_{i}, b_{i}\right], \text { where } a_{1}<b_{1}<a_{2}<b_{2}<a_{3}<b_{3}<\ldots \ldots .<a_{n}<b_{n} .
$$

$D\left(a_{i}^{\prime}, b_{i}^{\prime}\right)$ is a Denjoy proper subdomain of $D\left(a_{i}, b_{i}\right)$ if $\left[a_{i}, b_{i}\right] \subset\left[a_{i}^{\prime}, b_{i}^{\prime}\right]$ for each $i(1 \leq i \leq n)$ ．Consider a Re－imbedding f of $D\left(a_{i}^{\prime}, b_{i}^{\prime}\right)$ into $D\left(a_{i}, b_{i}\right)$ i．e．f is coformal into $D\left(a_{i}, b_{i}\right)$ from $D\left(a_{i}^{\prime}, b_{i}^{\prime}\right)$ s．t．$f(z) \rightarrow E_{i}$ if and only if $z \rightarrow\left[a_{i}^{\prime}, b_{i}^{\prime}\right]$ ，where E_{i} is a component of $\hat{\mathbf{C}}-f\left(D\left(a_{i}^{\prime}, b_{i}^{\prime}\right)\right)$ which contains $\left[a_{i}, b_{i}\right]$ ．

Theorem For $n \geq 3$ ，re－imbedding f ，$\hat{\mathbf{C}}-f\left(D\left(a_{i}^{\prime}, b_{i}^{\prime}\right)\right)$ has no interior point．
Theorem For $n \geq 3$ ，if $a_{1}=a_{1}^{\prime}, b_{1}=b_{1}^{\prime}, a_{2}=a_{2}^{\prime}, b_{n}=b_{n}^{\prime}$ ，re－imbedding f is only identity mapping．

参考文献

［IM］H．Ishida and F．Maitani，Conformal imbeddings of Denjoy domains，Acta H．S．Univ．Sangio Kyot．，30（2001），1－7．
[IM2] H. Ishida and F. Maitani, Conformal imbeddings of Denjoy domains, Acta H.S. Univ. Sangio Kyot., 31(2002), 1-5.
[MF] F. Maitani, Variation of meromorphic differentials under quasiconformal deformations. J. Math. Kyoto Univ., 24(1984), 49-66.
[MF2] F. Maitani, What is an optimal embedding, Proceedings of 5-th International Colloquium on Finite or Infinite Dimensional Complex Analysis, Beijing, (1997), 221-228.
[MF3] F. Maitani, Conformal welding of annul, Osaka J. Math. 35(1998), 579-591.
[NM] K. Nishikawa and F. Maitani, Moduli of ring domains obtained by a conformal sewing. Kodai Math. J. 20(1997), 161-171
[O1] K. Oikawa, Welding of polygons and the type of Riemann surfaces, Kodai Math. Sem. Rep., 13(1961), pp.35-52.
[O2] K. Oikawa, Moduli of Ring domains obtained by conformal sewing, Lecture memorial.

Kiitos! Näkemiin!

